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Robust H∞H∞H∞ Networked Control for Uncertain Fuzzy

Systems with Time-delay
YANG De-Dong1, 2 ZHANG Hua-Guang1, 2

Abstract A robust H∞ networked control method for Takagi-Sugeno (T-S) fuzzy systems with uncertainty and time delay is
presented. A state feedback controller is designed via the networked control system (NCS) theory. Sufficient condition for robust
stability with H∞ performance is obtained. Network-induced delay in network transmission and packet dropout are analyzed.
Simulation result shows the validity of this control scheme.
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1 Introduction

Fuzzy control is a useful approach to solve the control
problems of nonlinear systems[1∼5]. Over the past few
years, the stability analysis and the synthesis problem of
fuzzy systems as an important issue was studied by many
researchers. Takagi-Sugeno (T-S) fuzzy system proposed
by [6] is widely applied to industrial control because of its
simple structure with local dynamics. The typical design
approaches are carried out based on fuzzy model via the so-
called parallel distributed compensation (PDC) method[7].
In recent years, some controller design methods based on
linear matrix inequality (LMI) technology have also been
used for the stability analysis and the controller design of
T-S fuzzy systems.

Recently, many researches about the T-S fuzzy model
with time delay term have been presented to deal with the
stability and the stabilization problem of the nonlinear sys-
tem with time-delay[1∼5]. The analysis and the synthesis
problem for continuous and discrete-time nonlinear systems
via PDC approach was considered in [1, 2]. Stable fuzzy
controller for nonlinear time-delay system was represented
by LMI. The main results were based on the state feed-
back or observer technique. Delay-dependent robust con-
troller was designed via state feedback in [3]. On the basis
of Lyapunov criterion and Razumikhin theorem, some suf-
ficient conditions were derived, under which the parallel-
distributed fuzzy control can stabilize the whole uncertain
fuzzy time-delay system asymptotically[4]. Stability anal-
ysis was studied for fuzzy control systems with bounded
uncertain delays, and design approach based on LMIs was
developed[5].

During the past decade, the robust H∞ control for sys-
tems with delay has received considerable attention[8∼15].
A novel delay-dependent robust H∞ control for uncer-
tain systems with a state-delay was proposed based on
Lyapunov-Krasovskii functional approach in [10]. Some
other results aimed at the interval time-varying delay, input
delays, and multiple input-output delays were also given in
[8, 12, 13], respectively. Output feedback H∞ control was
applied to communication networks with delays, uncertain
stochastic systems with time-varying delays, and uncertain
discrete-time-delay fuzzy systems in [9, 14, 15]. Three per-
formance criteria have been established based on quadratic
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H2 performance, H∞, criteria and simultaneous H2/H∞
synthesis by [11].

Presently, much attention has been paid to the stabil-
ity analysis and controller design of networked control sys-
tems (NCS) by [16∼21]. Both network-induced delay and
packet dropout in network transmission have very large in-
fluence for stability of the whole system. In [21], a detailed
summary was made for review of previous work, and the
relationship between the sampling rate and the network-
induced delay was captured using a stability region plot. In
[19], a model of NCS was provided under consideration of
the network-induced delay and the packet dropout in the
transmission. Robust controllers for uncertain NCS were
also obtained in [20]. How to analyze stability of nonlin-
ear NCS is a challenging and interesting topic. Some re-
sults about the stability of nonlinear NCS were obtained in
[16∼18]. Input-to-state stability (ISS) and input-to-output
stability (IOS) were also analyzed in details in [16∼17].
However, these methods often require some strict assump-
tions for system model so they are difficult to practical
application.

In this article, we propose a novel control scheme which
is the robust H∞ networked control method for T-S fuzzy
system with uncertainty and time delay in network con-
dition. The robust H∞ performance index of controlled
model after considering network action is satisfied. Utiliz-
ing fuzzy control method and considering quality of service
(QoS) in network system, the corresponding state feedback
control law is obtained. We consider the stabilization prob-
lem of T-S fuzzy system with uncertainty and time delay
in network condition. Further, some sufficient conditions of
this control scheme are proposed by solving a set of LMIs.
As far as we know, network condition has not been often
considered in the usual fuzzy robust H∞ control method.

2 Problem formulation

In general, a uncertain nonlinear time-delay system can
be described by the T-S fuzzy system with uncertainty
and time delay, which expresses the nonlinear system as
a weighted sum of linear systems. The i-th rule is of the
following format:

Rule i :

If θ1(t) is Fi1, · · · , and θn̄(t) is Fin̄

Then

ẋxx(t) = (Ai + ∆Ai)xxx(t) + (Adi + ∆Adi)xxx(t− τ)+

(Bi + ∆Bi)uuu(t) + Ciwww(t)

zzz(t) = Dixxx(t) + Eiuuu(t)

xxx(t) = ϕ(t),−τ̄ ≤ t < 0, for i = 1, 2, · · · , r

.
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where i = 1, 2, · · · , r is the number of fuzzy rules, xxx(t) ∈ Rn

and zzz(t) ∈ Rq denote the state vector and the mea-
surement output vector, www(t) ∈ Rp is the disturbance
input vector, uuu(t) ∈ Rm is the control input, Ai and
Adi ∈ Rn×n are known system matrices, Bi ∈ Rn×m is
the input matrix, Ci ∈ Rn×p is the disturbance input ma-
trix, Di ∈ Rq×n, and Ei ∈ Rq×m, respectively, of the
i-th subsystem. We assume that the admissible uncertain-
ties satisfy ∆Ai = M1iF (t)N1i, ∆Adi = M2iF (t)N2i, and
∆Bi = M3iF (t)N3i, where Mk1i (k1 = 1, 2, 3), Nk2i (k2 =
1, 2, 3), and FT(t) are real matrices with appropriate di-
mensions, and satisfy FT(t)F (t) ≤ I. τ is the constant
bounded time delay in the state and it is assumed to be
0 < τ ≤ τ̄ , θ1(t), θ2(t), . . ., θn̄(t) are premise variables,
Fig is a fuzzy set (g = 1, 2, · · · , n̄). The inferred system is
described by

ẋxx(t) =

rX
i=1

hi(θ(t))[(Ai + ∆Ai)xxx(t) + (Adi + ∆Adi)xxx(t− τ)

+ (Bi + ∆Bi)uuu(t) + Ciwww(t)]

Considering the network action, the state feedback con-
troller is

uuu(t) =

rX
i=1

hi(θ(t))Kixxx(tk)

The inferred fuzzy system is reconstructed in the follow-
ing form

ẋxx(t) =

rX
i=1

rX
j=1

hi(θ(t))hj(θ(t))[(Ai + ∆Ai)xxx(t) + (Adi+

∆Adi)xxx(t− τ) + (Bi + ∆Bi)Kjxxx(tk) + Ciwww(t)],

for t ∈ [tk + τk, tk+1 + τk+1) (1)

where tk is the sampling instant, and xxx(tk) is the state
vector of plant at the instant tk, which is a piecewise con-
stant function, by using a zeroth-order-hold (ZOH), τk de-
notes the network-induced delay k = 0, 1, 2, · · · , (τ0 = 0).
ts = tk+1 − tk is the sampling period.

Remark 1. The packet is transmitted at the instant
tk, which contains the measured value of the plant state
vector, xxx(tk). Note that xxx(tk) keeps constant in the interval
t ∈ [tk + τk, tk+1 + τk+1) until next update. It is assumed
that there does not exist controller-to-actuator delay, so
uuu(t) can be sent to the plant as control input immediately.
Obviously, while τ0 = 0,

lim
N→∞

N[

k=0

[tk + τk, tk+1 + τk+1) = [t0,∞), t0 ≥ 0

3 Robust H∞H∞H∞ networked control via
state feedback

In this section, the robust H∞ networked control via
state feedback will be designed according to (1). Before
giving the controller design method, we make the following
assumptions:

Assumption 1. The sensor is time-driven. The con-
troller and actuator are event-driven. The clocks among
them are synchronized.

Assumption 2. The signal transmission is with in a
single packet. Also the computational delay is negligible.

Assumption 3. The overall closed-loop system is under
zero initial condition.

Assumption 4. We introduce the notion of a maximum
allowable transfer interval δ > 0. The maximum allowable
transfer interval is a deadline; if a transmission of packet
takes place at time tk and the control signal will reach the
plant at the instant tk + τk, then the next control signal
must arrive within the time interval (tk, tk + δ]. It is ex-
plicit that the next control signal will arrive at the instant
tk+p + τk+q if the packet dropout in network transmission
is considered. The following condition is assumed

tk+p − tk + τk+p ≤ δ, k = 0, 1, 2, · · · , p = 1, 2, · · · , pmax

(2)

where p, and pmax are positive integers, which denote
the sampling number and the maximum sampling number
within δ, and in fact δ has a upper bound under the condi-
tion of guaranteed stability of the closed-loop system. We
assume that the upper bound is smaller than τ̄ .

Remark 2. We should notice that the network-induced
delay is different to the system delay, because it is time
varying and unknown. When the transmission time of a
packet exceeds the threshold designed by the common net-
work protocols, the packet is regarded as a data dropout.
For example, tk+2 + τk+2 < tk+1 + τk+1 means that the
new data packet may reach the plant before the old one.
In fact, we first suppose that δ exists. From (2), i.e., p = 2,
it is required that tk+2 − tk + τk+2 ≤ δ. Thus, the old
data packet containing xxx(tk+1) will be discarded. There-
fore, when p > 1, some packets may be discarded while the
whole closed-loop system is still stable under the condition
(2). From the point of view of the QoS, the network re-
source is saved by decreasing the network-induced delay or
discarding the old packet, based on δ, which can be realized
by a suitable network scheduling method. It is explicit that
if p = 1, (2) becomes

tk+1 − tk + τk+1 ≤ δ, k = 0, 1, 2, · · · (3)

This means that packet dropout is unallowable in the trans-
mission.

The relationship between δ and the performance of NCS
will be analyzed. For given δ, the smaller the sampling
period ts, the higher the allowable packet dropout rate.
But the amount of communication required will be more.
However, the larger sampling period will lead to the lower
allowable packet dropout rate, which may degrade the per-
formance of system.

For simplicity, we assume p = 1 in the following discus-
sion.

Lemma 1[22]. For any constant symmetric matrix M ∈
Rm×n, M = MT > 0, scalar α > 0, vector function
ξ : [0, α] → Rn, such that the integrations in the following
are well defined, then

α

Z α

0

ξT(β)Mξ(β)dβ≥
„Z α

0

ξ(β)dβ

«T

M

„Z α

0

ξ(β)dβ

«

Lemma 2. Let Q be any l̄ × n matrix, we have for any
constant ε > 0 and any positive-definite symmetric matrix
T that

2ζTQη ≤ εζTQT−1QTζ +
1

ε
ηTTη

for all ζ ∈ Rl̄, η ∈ Rn and T ∈ Rn×n.
Proof. Similar to the proof in [23], the condition can be

obtained. The process is omitted.
Lemma 3[24]. For any matrices D ∈ Rn×nf , E ∈ Rnf×n

and F ∈ Rnf×nf , with ‖F‖ ≤1, and scalar ε > 0, the
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following inequality holds

DFE+ ETFTDT ≤ ε−1DDT + εETE.

Theorem 1. If there exist matrices P1 = PT
1 > 0,

P2 = PT
2 > 0, T = TT > 0, matrices Kj (j = 1, 2, · · · , r),

matrices Yl (l = 1, 2, 3) of appropriate dimensions and con-
stant matrices Yl (l = 4, 5, 6) of appropriate dimensions
such that the following LMIs (4) hold for given scalars δ > 0
and ε > 0, then the closed-loop system (1) with www(t) ≡ 0
is asymptotically stable.

Ωii < 0, for any 1 ≤ i ≤ r

Ωij + Ωji < 0 for any 1 ≤ i < j ≤ r (4)

where

Ωij =

2
666664

Π1,1 Π1,2 Π1,3 Π1,4 Π1,5 0
∗ Π2,2 Π2,3 Π2,4 Π2,5 0
∗ ∗ Π3,3 Π3,4 0 0
∗ ∗ ∗ Π4,4 Π4,5 Π4,6

∗ ∗ ∗ ∗ Π5,5 0
∗ ∗ ∗ ∗ ∗ Π6,6

3
777775

Π1,1 = P2 + Y1 + Y T
1 − Y4Ai −AT

i Y T
4 + ε−1Y4(M1iM

T
1i +

M2iM
T
2i + M3iM

T
3i)Y

T
4 + (ε + 2ε−1)NT

1iN1i,
Π1,2 = P1 + Y T

3 + Y4 −AT
i Y T

6 , Π1,3 = −Y4Adi,
Π1,4 = −Y1 + Y T

2 − Y4BiKj −AT
i Y T

5 , Π1,5 = δY1,
Π2,2 = δT + Y6 + Y T

6 + εY6M1iM
T
1iY

T
6 + ε−1Y6(M2iM

T
2i +

M3iM
T
3i)Y

T
6 , Π2,3 = −Y6Adi, Π2,4 = −Y3 + Y T

5 − Y6BiKj ,
Π2,5 = δY3, Π3,3 = −P2 + (2ε + ε−1)NT

2iN2i,
Π3,4 = −AT

diY
T
5 ,

Π4,4 = −Y2 − Y T
2 − Y5BiKj −KT

j BT
i Y T

5 + εY5(M1iM
T
1i +

M2iM
T
2i)Y

T
5 + ε−1Y5M3iM

T
3iY

T
5 , Π4,5 = δY2,

Π4,6 =
√

3εKT
j NT

3i, Π5,5 = −δT , Π6,6 = −I.

Proof. Consider a Lyapunov functional as

V (t) =xxxT(t)P1xxx(t) +

Z t

t−τ

xxxT(s)P2xxx(s)ds+

Z t

t−δ

Z t

s

ẋxxT(v)Tẋxx(v)dvds

where P1 = PT
1 > 0, P2 = PT

2 > 0, and T = TT > 0. The
corresponding time derivative of V (t) for t ∈ [tk+τk, tk+1+
τk+1) can be given and its formation is omitted.

From (3) and Lemmas 1-2, we can get for t ∈ [tk +
τk, tk+1 + τk+1)

Z t

tk

ẋxxT(s)Tẋxx(s)ds ≤
Z t

t−δ

ẋxxT(s)Tẋxx(s)ds

and

− 2(xxxT(t)Y1 + xxxT(tk)Y2 + ẋxxT(t)Y3)

Z t

tk

ẋxx(s)ds ≤

δΛT(t)Ȳ T−1Ȳ TΛ(t) +

Z t

t−δ

ẋxxT(s)Tẋxx(s)ds

where Ȳ T = [Y T
1 Y T

3 0 Y T
2 ], ΛT = [xxxT(t) ẋxxT(t) xxxT(t−

τ) xxxT(tk)].
Utilizing Lemma 3 and Schur complement, the condi-

tions in Theorem 1 can be obtained. ¤
In the following derivation process, we will consider the

robust stability of (1) with H∞ performance index. In order

to attenuate the external disturbance of the fuzzy system
(1), we introduce H∞ performance index, i.e.,

Z ∞

t0

zzzT(t)zzz(t)dt ≤ γ2

Z ∞

t0

wwwT(t)www(t)dt (5)

where γ > 0 denotes prescribed attenuation level.
Theorem 2. If there exist matrices P̄1 = P̄T

1 > 0,
P̄2 = P̄T

2 > 0, T̄ = T̄T > 0, matrices K̄j (j = 1, 2, · · · , r),
matrices Ȳl (l = 1, 2, 3) of appropriate dimensions and con-
stant matrices Ȳl (l = 4, 5, 6) of appropriate dimensions
such that the following LMIs (6) hold for given scalars
δ > 0, ε > 0, and γ > 0, then the closed-loop system
(1) is robustly stable with H∞ performance index (5).

Ω
′
ii < 0, for any 1 ≤ i ≤ r

Ω
′
ij + Ω

′
ji < 0 for any 1 ≤ i < j ≤ r (6)

where

Ω
′
ij=

2
6666666666664

Π
′
1,1 Π

′
1,2 Π

′
1,3 Π

′
1,4 Π

′
1,5 Π

′
1,6 0 0

∗ Π
′
2,2 Π

′
2,3 Π

′
2,4 Π

′
2,5 Π

′
2,6 0 0

∗ ∗ Π
′
3,3 Π

′
3,4 0 0 0 0

∗ ∗ ∗ Π
′
4,4 Π

′
4,5 Π

′
4,6 Π

′
4,7 Π

′
4,8

∗ ∗ ∗ ∗ Π
′
5,5 0 0 0

∗ ∗ ∗ ∗ ∗ Π
′
6,6 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π
′
7,7 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π
′
8,8

3
7777777777775

Π
′
1,1 = P̄2 + Ȳ1 + Ȳ T

1 − Ȳ4Ai −AT
i Ȳ T

4 + ε−1Ȳ4(M1iM
T
1i +

M2iM
T
2i + M3iM

T
3i)Ȳ

T
4 + (ε + 2ε−1)NT

1iN1i + DT
i Di,

Π
′
1,2 = P̄1 + Ȳ T

3 + Ȳ4 −AT
i Ȳ T

6 , Π
′
1,3 = −Ȳ4Adi,

Π
′
1,4 = −Ȳ1 + Ȳ T

2 − Ȳ4BiK̄j −AT
i Ȳ T

5 + DT
i EiK̄j ,

Π
′
1,5 = δȲ1, Π

′
1,6 = −Ȳ4Ci, Π

′
2,2 = δT̄ + Ȳ6 + Ȳ T

6 +

εȲ6M1iM
T
1iȲ

T
6 + ε−1Ȳ6(M2iM

T
2i + M3iM

T
3i)Ȳ

T
6 ,

Π
′
2,3 = −Ȳ6Adi, Π

′
2,4 = −Ȳ3 + Ȳ T

5 − Ȳ6BiK̄j , Π
′
2,5 = δȲ3,

Π
′
2,6 = −Ȳ6Ci, Π

′
3,3 = −P̄2 + (2ε + ε−1)NT

2iN2i,

Π
′
3,4 = −AT

diȲ
T
5 ,

Π
′
4,4 = −Ȳ2 − Ȳ T

2 − Ȳ5BiK̄j − K̄T
j BT

i Ȳ T
5 + εȲ5(M1iM

T
1i +

M2iM
T
2i)Ȳ

T
5 + ε−1Ȳ5M3iM

T
3iȲ

T
5 , Π

′
4,5 = δȲ2,

Π
′
4,6 = −Ȳ5Ci, Π

′
4,7 = K̄T

j ET
i , Π

′
4,8 =

√
3εK̄T

j NT
3i,

Π
′
5,5 = −δT̄ , Π

′
6,6 = −γ2I, Π

′
7,7 = −I, Π

′
8,8 = −I.

Proof. Consider a Lyapunov functional as

V (t) =xxxT(t)P̄1xxx(t) +

Z t

t−τ

xxxT(s)P̄2xxx(s)ds+

Z t

t−δ

Z t

s

ẋxxT(v)T̄ ẋxx(v)dvds

where P̄1 = P̄T
1 > 0, P̄2 = P̄T

2 > 0, and T̄ = T̄T > 0.
Similar to the proof in Theorem 1, under Assumption 3,
the conditions in Theorem 2 can be obtained. The process
is omitted.

For the sake of minimizing the upper bound of δ un-
der some restrictions, we can use the modified generalized
eigenvalue minimization problem (GEVP) technique[25] to
solve the suboptimal problem.

Theorem 3. There exists an upper bound of δmax = 1/ς
such that for any 0 < δ < δmax, the closed-loop system
(1) can be robustly stabilized with H∞ performance index
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(5), if the following GEVP problem is feasible for matrices
Y̌ = Y̌ T > 0, P̄1 = P̄T

1 > 0, P̄2 = P̄T
2 > 0, T̄ = T̄T >

0, matrices K̄j (j = 1, 2, · · · , r), matrices Ȳl (l = 1, 2, 3)
of appropriate dimensions and the given constant matrices
Ȳl (l = 4, 5, 6) of appropriate dimensions, scalars ε > 0 and
γ > 0:

Minimize ς =
1

δ
> 0

s.t.

8
<
:

X̃ <

»
Y̌ 0
0 0

–

Y̌ < ςZ̃
(7)

for 1 ≤ i ≤ j ≤ r, where

X̃ =

2
6666666664

0 0 0 0 0 0 0 Ȳ1

∗ T̄ 0 0 0 0 0 Ȳ3

∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 Ȳ2

∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −T̄

3
7777777775

,

Z̃ =

2
666666664

Π̃1,1 Π̃1,2 Π̃1,3 Π̃1,4 0 Π̃1,6 0

∗ Π̃2,2 Π̃2,3 Π̃2,4 0 Π̃2,6 0

∗ ∗ Π̃3,3 Π̃3,4 0 0 0

∗ ∗ ∗ Π̃4,4 Π̃4,5 Π̃4,6 Π̃4,7

∗ ∗ ∗ ∗ Π̃5,5 0 0

∗ ∗ ∗ ∗ ∗ Π̃6,6 0

∗ ∗ ∗ ∗ ∗ ∗ Π̃7,7

3
777777775

Π̃1,1 = Π
′
1,1, Π̃1,2 = Π

′
1,2, Π̃1,3 = Π

′
1,3, Π̃1,4 = Π

′
1,4,

Π̃1,6 = Π
′
1,6, Π̃2,2 =

Ȳ6 + Ȳ T
6 + εȲ6M1iM

T
1iȲ

T
6 + ε−1Ȳ6(M2iM

T
2i + M3iM

T
3i)Ȳ

T
6 ,

Π̃2,3 = Π
′
2,3, Π̃2,4 = Π

′
2,4, Π̃2,6 = Π

′
2,6, Π̃3,3 = Π

′
3,3,

Π̃3,4 = Π
′
3,4, Π̃4,4 = Π

′
4,4, Π̃4,5 = Π

′
4,8, Π̃4,6 = Π

′
4,6,

Π̃4,7 = Π
′
4,7, Π̃4,8 = Π

′
4,8, Π̃5,5 = Π

′
8,8, Π̃6,6 = Π

′
6,6,

Π̃7,7 = Π
′
7,7.

Proof. Given Ω
′
ij , we exchange column 5 with column

8, and row 5 with row 8. Similar to the proof in [25], the
process is omitted.

Remark 3. It is very explicit that the above result may
be only suboptimal because some matrices and parameters
must be given in advance. In fact, we can also introduce
the following design process to obtain another suboptimal
value about δ.

Design procedure.
Step 1. Select membership functions and construct

fuzzy plant rules.
Step 2. Choose an appropriate attenuation level γ > 0,

a scalar ε > 0 and randomly choose the constant matrices
Ȳl (l = 4, 5, 6) of appropriate dimensions.

Step 3. Choose an initial δ > 0 according to current
network demand.

Step 4. Solve the LMIs in (6) to obtain Kj (j =
1, 2, · · · , r), P̄1, P̄2, T̄ , and Ȳl (l = 1, 2, 3) of appropri-
ate dimensions. If the solutions of LMIs do not exist, we
repeat Step 2.

Step 5. Increase δ and repeat Step 4 until the cycle
indices arrive the setting value.

Step 6. Construct the fuzzy robust H∞ networked con-
troller.

4 Simulation result

In this section, an example is presented to show the valid-
ity of our control scheme. We use the above design method
to design a robust H∞ networked controller for the follow-
ing nonlinear systems.

Example. Consider the following nonlinear system pro-
posed in [26]; the structures and parameters for this fuzzy
system are omitted.

We select

Ȳ4 =

»
-12.3 -4.3
-3.8 -6.3

–
, Ȳ5 =

»
-3.4 -4.3
-3.0 -3.6

–
,

Ȳ6 =

»
-4.7 -3.7
-3.3 -3.7

–
, ε = 1, γ = 0.65, δ = 0.15

Applying Theorem 2, the feasible solutions to (6) are
given as follows.

P̄1 =

»
14.4220 10.2578
10.2578 13.7708

–
, P̄2 =

»
6.2221 2.6455
2.6455 1.9581

–

T̄ =

»
14.6049 7.7547
7.7547 10.5054

–
, Ȳ1 =

»
-96.7872 -51.4147
-51.3546 -69.5131

–

Ȳ2 =

»
96.7588 51.3676
51.3474 69.4784

–
, Ȳ3 =

»
-0.0337 -0.0271
-0.0336 -0.0319

–

K1 =
ˆ

-1.9558 -0.6443
˜
, K2 =

ˆ
-3.4021 -0.0378

˜

Next, under the same initial value ϕ(t) = (0.5 − 1)T

for t ∈ [−0.5, 0], we show the results with the different
network condition. The figures are ignored because of the
length restriction.

Case 1. Sampling period ts = 0.05, network-induced
delay τD ≤ 0.03, and system state delay time τ = 0.5 are
given according to system demand.

Case 2. Sampling period ts = 0.1, network-induced
delay τD ≤ 0.01, and system state delay time τ = 1 are
given according to system demand.

Case 3. Sampling period ts = 0.1, network-induced
delay τD ≤ 0.01, and system state delay time τ = 3 are
given according to system demand.

Case 4. Sampling period ts ≤ 0.1 (random change in
this scope), network-induced delay τD ≤ 0.01, and system
state delay time τ = 3 are given according to system de-
mand.

It is very explicit that the uncertain fuzzy system is still
robustly stable with H∞ performance after considering dif-
ferent network action.

5 Conclusion

In this study, a robust H∞ networked control method for
T-S fuzzy systems with time delay has been proposed. NCS
theory is used to design system controller. Both network-
induced delay and packet dropout are considered in an uni-
form framework. During the sampling interval, the plant is
controlled based on the robust H∞ state feedback control
law. Simulation result shows the validity of the presented
control scheme. Of course, some special properties of NCS
can not be reflected as the system with time-delay, and
some random modeling method should be applied to the
design. These issues will be researched in our future work.
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