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Switching Logic-based Adaptive
Robust Control of Nonlinearly

Parameterized Uncertain
Systems

MA Bo-Jun1 FANG Yong-Chun1 XIAO Xiao1

Abstract In this paper, a switching logic-based adaptive ro-
bust control is proposed for a class of nonlinearly parameter-
ized systems (NPS). Specifically, the controller mainly consists
of a robust type term to address the system uncertainty, and a
switching logic tuning mechanism to update the involved con-
trol gain. The constructed controller achieves a global uniformly
ultimate boundedness (GUUB) result for the system errors, and
simulation results are included to demonstrate the effectiveness
of the control law.
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1 Introduction
Over the past decades, adaptive control has attracted

much attention of the control field for uncertain nonlin-
ear plants. Typically, an adaptive controller tries to esti-
mate the uncertainty within the system by utilization of
on-line gathered information, and thus to obtain knowl-
edge on the system dynamics to the utmost extent[1]. In
other words, an adaptive control law follows a step-by-step
method to obtain a better understanding for the plant, so
that a satisfactory control performance is achieved. Differ-
ent from the more conservative robust control which aims
to damp out the system uncertainty by employing a worst-
case size dominating term, adaptive control law usually in-
volves much less control energy. Hence, it is often more
applicable in reality. In fact, adaptive control has been re-
garded as one of the most elegant and most important tools
for uncertain nonlinear system control. Unfortunately, cur-
rently developed adaptive control can only address a class
of nonlinear systems whose uncertainty enters the system
in a linear way. In other words, the so-called linear param-
eterization (LP) condition is often required a priori when
applying adaptive control for a plant.

Recently, the adaptive control of nonlinearly parameter-
ized systems (NPS) has been a topic of considerable in-

terest in the control field[2∼8]. For example, Ye et al. in
[9] designed a global adaptive controller for a class of feed-
forward nonlinear systems to asymptotically regulate the
system errors. In [10], Ge et al. proposed a robust adap-
tive control approach for a class of time-varying uncertain
nonlinear systems which achieves a global uniformly ulti-
mate boundedness (GUUB) stability. In [11], Fang et al.
designed an adaptive learning control law to attack a class
of nonlinearly parameterized uncertain systems, in which
the uncertainty can be separated into an unknown param-
eter vector multiplying a periodic signal. Unfortunately,
for recently developed adaptive controllers targeting NPS,
various assumptions have to be imposed to achieve a de-
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sired performance; hence, the control of uncertain NPS is
far from being solved and it is actually a very challeng-
ing problem for the control field. Recently, some control
structures have been reported on addressing uncertain dy-
namic systems with the control gains tuned via an on-line
mechanism. In [12], Ye et al. constructed a switching type
adaptive control law to address a class of nonlinearly pa-
rameterized system in which some control parameter was
tuned via a switching logic. Motivated by these results, in
this paper, we propose a switching logic-based adaptive ro-
bust control for a class of NPS which enables GUUB track-
ing result for the system errors. Specifically, we propose a
robust type controller whose gain is updated online until
the system demonstrates superior performance. The result
is based on a stability analysis that involves the applica-
tion of Lyapunov techniques, and simulation results are in-
cluded to demonstrate the effectiveness of the designed con-
trol law. The contribution of the paper lies in the fact that
a switching logic-based adaptive robust control is designed
to address the tracking problem of a general NPS. Superior
over other controllers with switching logic, the constructed
adaptive robust control is continuous and presents no chat-
tering problem which then makes it more applicable in re-
ality. Besides, the contribution of the paper also includes
the introduction of the innovative updating mechanism for
control parameters based on the performance of the chosen
Lyapunov function. This updating mechanism can be fused
with other type controllers to achieve desired performance
for uncertain complex systems.

2 System dynamics

In this paper, we consider the tracking problem for the
following nonlinear system

ẋxx = [fff(xxx, t) + ∆fff(xxx,vvv, t)] + uuu (1)

where xxx(t) ∈ RRRn is the system state, uuu(t) ∈ RRRn denotes
the control input to the system. The bracketed terms rep-
resent the system dynamics where fff(xxx, t)∈ RRRndenotes the
so-called nominal dynamics, ∆fff(xxx,vvv, t) ∈ RRRn is the system
uncertainty caused by unmodeled dynamics and unknown
disturbance vvv ∈ RRRm exerted on the system. For the system
of (1), we assume that if xxx(t) ∈ L∞ , then fff(xxx, t) ∈ L∞ .
And for the uncertainty ∆fff(xxx,vvv, t), there exists a bounding

function ρ(xxx, t, θθθ) ∈ RRR1 in the sense that[2]

‖∆fff(xxx,vvv, t)‖ ≤ ρ(xxx, t, θθθ) (2)

where the structure of the function ρ(xxx, t, θθθ) ∈ RRR1 is known
while θθθ ∈ RRRp denotes unknown parameter vector. Further,
it is assumed that the function ρ(xxx, t, θθθ) increases monoton-
ically with respect to each θi, i = 1, 2, · · · , p.

It is generally known that if the upper bound of θi is
known a priori, then a robust control can be developed
to obtain a GUUB stability result for system (1). If the
bounds of θi is unknown, yet the parameter θi remains con-
stant and the bounding function ρ(xxx, t, θθθ) satisfies the LP
condition, then a robust adaptive control law can be con-
structed to achieve an asymptotic stability result. More-
over, if ρ(xxx, t, θθθ) can be only fractionally linearly parame-
terized, then the adaptive robust controller proposed in [2]
can be utilized to obtain a practical stability for system
(1). In this paper, we remove these assumptions regarding
the system dynamics and propose a switching logic-based
adaptive robust control to achieve GUUB result for a class
of more general NPS.
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Remark 1. As can be seen in a nonlinear controller, a
feedforward term is usually adopted to damp out (such as in
the robust control) or cancel out (such as in the adaptive
control) the uncertainty of the dynamics. Unfortunately,
such a term is prone to degrade the original ambitious non-
linear controller into a simple bang-bang controller due to
the fact that this damping or cancelling term usually in-
volves large control input which exceeds the physical limits
of the practical controller and thus saturates it into a bang-
bang controller. With this in mind, our subsequent analysis
aims to design a tight feedforward term to attack the sys-
tem uncertainty so that the previously stated problem is
mostly avoided.

Remark 2. For simplicity, we utilize the first-order
system of (1) to demonstrate the process of robust adap-
tive control construction and stability analysis. However,
it should be noted that the proposed design method can be
easily extended to address higher-order systems by fusing
it with linear filters, provided that the full state informa-
tion is available for feedback. Specifically, a higher-order
system can be transformed into a first-order system by in-
troducing a series of linear filters. Further, based on the
property of the linear filters, it is easy to show that the ob-
tained first-order system has the same kind of stability as
the previous higher-order system. Based on this fact, if we
follow the same process described in the paper to construct
an adaptive robust control for the transformed first-order
system, then the desired performance can also be achieved
for the previous higher-order system.

3 Switching logic-based adaptive robust
control

3.1 Error system developments

The control objective is to make the system state track
some desired trajectory xxxd (t) ∈ RRRn with the assumption
that xxxd (t) , ẋxxd (t) ∈ L∞. To aid the subsequent controller
construction and stability analysis, we define the tracking
error signal eee (t) ∈ RRRn as

eee = xxxd − xxx (3)

To obtain the open-loop dynamics of the error system,
we take the time derivative of (3) and then substitute the
dynamics of (1) into the resulting expression to obtain

ėee = ẋxxd − [fff(xxx, t) + ∆fff(xxx,vvv, t)]− uuu (4)

3.2 Adaptive robust control design

For the system parameters defined in (2), we assume that
θi is time-varying in a compact set Ωi and it is bounded in
the sense that

|θi| ≤ θ̄i, i = 1, 2, · · · , p (5)

where θ̄i ∈ RRR1 represents an unknown positive constant.
Based on (5), we define a positive constant p∗ ∈ RRR1 as
follows

p∗ = max
˘
θ̄i

¯
, i = 1, 2, · · · , p (6)

Then based on the assumption that the function ρ(xxx, t, θθθ)
increases monotonically with respect to each θi, i =
1, 2, · · · , p, the following fact can be easily shown 1

ρ(xxx, t, θθθ) = ρ(xxx, t, θ1, ..., θp) ≤ ρ(xxx, t, p∗, ..., p∗) (7)

1Hereon, for notation simplicity, we will write the function
ρ(xxx, t, p∗, · · · , p∗) as ρ(xxx, t, p∗).

Based on the open loop dynamics of (4) and the subse-
quent stability analysis, we design the following adaptive
robust control law

uuu = ẋxxd + keeee +
ρ2(xxx, t, kp)eee

ρ(xxx, t, kp) ‖eee‖+ ερ
− fff(xxx, t) (8)

where ke ∈ RRR1 denotes a positive control gain, while ερ ∈
RRR1 and kp ∈ RRR1 are positive control parameters wherein kp

is tuned via the subsequently designed mechanism.
After substituting (8) into the system dynamics and can-

celling common terms, we obtain the closed-loop dynamics
of ėee (t) as follows

ėee = −∆fff(xxx,vvv, t)− keeee− ρ2(xxx,t,kp)eee

ρ(xxx,t,kp)‖eee‖+ερ
(9)

To assist the subsequent control gain mechanism design,
we first analyze the system performance by Lyapunov tech-
niques. To do that, we choose a non-negative, scalar func-
tion V (t) ∈ RRR1 as follows

V =
1

2
eeeTeee (10)

After taking the time derivative of (10) and substitut-

ing (9) for ėee (t) into the resulting expression, V̇ (t) can be
obtained as follows

V̇ = eeeT

»
−∆fff(xxx,vvv, t)− keeee− ρ2(xxx, t, kp)eee

ρ(xxx, t, kp) ‖eee‖+ ερ

–
(11)

We can then apply the property of (2) into (11) to obtain

an upper bound of V̇ (t) as follows

V̇ ≤ −keeee
Teee +

ρ(xxx, t, p∗) ‖eee‖ ερ

ρ(xxx, t, kp) ‖eee‖+ ερ
−

ρ(xxx, t, kp) ‖eee‖2
ρ(xxx, t, kp) ‖eee‖+ ερ

(ρ(xxx, t, kp)− ρ(xxx, t, p∗))

(12)

Remark 3. Based on the fact that no bound of θi

is known a priori, the positive constant p∗ defined in (6)
is subsequently unknown which necessitates the following
section of tuning mechanism design for the control gain kp

introduced in (8).
Remark 4. Based on the inequality of (12) and the

fact that ρ(xxx, t, kp) increases monotonically with variable
kp, it is clear that if we choose a control gain large enough
ensuring

kp > p∗ (13)

then V̇ (t) can be upper bounded as

V̇ ≤ −keeee
Teee + ερ (14)

which can be further rewritten as

V̇ ≤ −2keV + ερ (15)

where (10) has been utilized. Based on (10) and (15), it is
clear that the tracking error eee(t) will quickly go to a neigh-
borhood around zero exponentially if the condition (13) is
ensured. Unfortunately, as no upper bound of θi is known,
it is usually difficult to select an appropriate gain kp. A
common way is to pick a large enough kp empirically to
guarantee the condition of (13) with most confidence. How-
ever, this conservative strategy brings some drawbacks such
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as the problem discussed in Remark 1 that an overlarge
control input usually degrades the proposed nonlinear con-
troller into a bang-bang controller. Hence, it is extremely
imperative to choose a control gain kp which makes the
condition (13) tightly hold. An intelligent method to fulfill
that is to initially pick a comparatively small gain kp and
then increase it gradually based on the performance of the
system. This motivates the subsequent tuning mechanism
design for the control gain kp.

3.3 Tuning mechanism design

As stated previously, a strategy is needed to tune the
control gain kp into a suitable range to achieve satisfactory
performance. Besides, it is often a physical requirement
that a controller in reality should be designed continuous.
Based on this demand, we propose the following algorithm
to tune the time derivative of the control gain, denoted as
k̇p, so that the control gain kp will behave smoothly to help
to construct a practical continuous controller.

In the algorithm, a criterion based on the performance
of the Lyapunov function (10) is first required to judge
whether kp has reached an appropriate value. To do so, we
solve the differential inequality of (15) to obtain

V (t) ≤ e−2ke(t−ts)V (ts) +
ερ

2ke

“
1− e−2ke(t−ts)

”
, t ≥ ts

(16)
with ts ∈ RRR1 represents a certain time from which the con-
dition of (13) holds. Based on the discussion made on Re-
mark 4, it is clear that the inequality of (16) can be utilized
as an indication that kp has reached a suitable value. Ac-
cording to this observation, we define an auxiliary signal
∆v(t) ∈ RRR1 as follows

∆v(t) = V (t)−
»
e−2ke(t−ts)V (ts) +

ερ

2ke

“
1− e−2ke(t−ts)

”–

(17)
Thus the tuning mechanism can be designed as follows: if

∆v (t) ≤ 0, then k̇p is set to zero and kp remains unchanged;

otherwise, k̇p is set to be a positive value and kp increases
for some time.

Besides, to make the control gain kp reach a suitable
value quickly, it is desired to adjust its increasing rate based
on the performance of V (t) as well. Motivated by that, we
utilize the ratio between ∆v(t) and V (t) as a guide to adjust
the increasing rate of kp, and we then define the following
auxiliary function Sv(t) ∈ RRR1 to describe the performance
of V (t):

Sv (t) =
∆v(t)

V (t) + εv
(18)

where εv ∈ RRR1 denotes a positive constant introduced to
avoid the possible singularity of (18) happened at the point
of V (t) = 0. After substituting (17) into (18) and perform-
ing some mathematical calculation, the function Sv(t) can
be rewritten as follows

Sv(t) = 1−
e−2ke(t−ts)V (ts) +

ερ

2ke

“
1− e−2ke(t−ts)

”
+ εv

V (t) + εv

(19)
Further, it is often beneficial in reality to constrain the

increasing rate of kp within a reasonable range. This fact

then inspires the introduction of the saturation-like func-
tion fsat(Sv) ∈ RRR1 to maintain the smoothness of the con-
trol input into the system:

fsat(Sv) =

8
<
:

α2, if Sv > α2
kv

kvSv, if α1
kv

< Sv ≤ α2
kv

α1, otherwise

(20)

where α1 and α2 ∈ RRR+ denote the lower and upper bounds
of the increasing rate, respectively, and kv ∈ RRR1 is a weight-
ing positive constant.

The tuning process is performed via a step-by-step way
until kp reaches an appropriate value. The scheme of the
tuning algorithm can be summarized as follows.

Initialization:
Set kp = kp0, ts = 0, k̇p = kpdot0, where kp0 is usually

chosen as a lower bound, kpdot0 is usually set to be relatively
large, and ts is utilized to memorize the time slot.

Switching logic:
At each time t > ts + τ with τ ∈ RRR1 being a positive

constant to ensure that each switch of k̇p will last for some
time, if

∆v(t) > 0 (21)

then set

k̇p = fsat(Sv), ts = t

to increase the control gain kp; otherwise, set

k̇p = 0

and kp remains invariable.
Remark 5. Based on the function of (20), it is easy to

see that when ∆v(t) > 0, the increasing rate of kp satisfies
the constraint of

α1 ≤ fsat(Sv) ≤ α2 (22)

where the bounding constants α1 and α2 are chosen ac-
cording to the system property.

Remark 6. Different from the algorithm proposed in
[12], the tuning mechanism developed in this paper obtains
a continuous control gain kp which brings much convenience
when combining the mechanism into the corresponding con-
trol strategy.

4 Stability analysis
Lemma 1. The gain tuning mechanism designed previ-

ously for system (1) will trigger a finite number of switches

(a switch means a change of k̇p from fsat(Sv) to 0, or vice
versa) and the algorithm finally achieves a bounded gain
kp.

Proof. To prove Lemma 1, we first show that k̇p can
only be switched a finite number of times. Without loss of
generality, assume that after the jth switch, ts = t1 and k̇p

takes the value of fsat(Sv) (Note that this is always possible
unless no switch happens), and the next switch happens at

time t2 which then sets k̇p to 0. Apparently, based on the
switching logic, we know that

t2 ≥ t1 + τ

then it is straightforward to show that

kp (t2) ≥ kp (t1) + α1τ (23)
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which demonstrates that over an interval with k̇p =
fsat(Sv), kp increases by amount of at least α1τ . Define

N =

»
p∗ − kp0

α1τ

–
+ 1 (24)

where [x] denotes a function to get the maximum integer
less than x. Based on this definition, we can then substitute
(24) into (23) to show that after N intervals with k̇p =
fsat(Sv), denoting the time as tf , the control gain kp (tf )
can be bounded as

kp (tf ) ≥ kp0 + Nα1τ ≥ p∗ (25)

Therefore, based on the analysis of Remark 4, we know
that

V̇ (t) ≤ −2keV (t) + ερ, for ∀t ≥ tf (26)

where (10) and (14) have been utilized. Further, integrat-
ing both sides of (26) yields

V (t) ≤ e−2ke(t−tf )V (tf )+
ερ

2ke
(1−e−2ke(t−tf )), for ∀t ≥ tf

Therefore, after time tf , the condition of (21) will never
hold, which implies that

k̇p = 0, for ∀t ≥ tf .

Hence, during the tuning process, there is at the most
N intervals with k̇p = fsat(Sv); however, as k̇p is only
switched between 0 and fsat(Sv), then there is at the most
2N times of switching involved in the tuning process with
the last switch to set k̇p as 0. Based on the previous facts,
it is then clear that kp remains bounded during the tuning
process. ¤

Now, we are able to present the main result.
Theorem 1. The proposed adaptive sliding mode con-

trol law of (8) ensures GUUB tracking result for the system
errors in the sense that

lim
t→∞

‖eee (t)‖ ≤
r

ερ

ke
(27)

Proof. Based on the result of Lemma 1, k̇p can only be

switched a finite number of times and k̇p equals 0 after the
final switching. Let t∗ be the time when the final switch
occurs. Then t∗ ∈ L∞, and according to the switching
logic, we must have

V (t) ≤ e−2ke(t−t∗)V (t∗)+
ερ

2ke
(1−e−2ke(t−t∗)), for ∀t ≥ t∗

(28)
Otherwise, a further switching would occur which con-

tradicts with the final switching fact. Hence, the result of
(27) directly follows from (28). A standard signal chasing
argument can then be employed to demonstrate that all the
signals during closed-loop operation are bounded. ¤

5 Simulation results
To illustrate the performance of the controller (8), we

simulate the following nonlinearly parameterized system2

via Matlab′s Simulink

2For simplicity, we utilized a SISO system to illustrate the per-
formance of the control system.

ẋ = u + xeθ1x2+θ2x (29)

where θ (t) = [θ1, θ2]
T denotes varying parameter vector as

θ1 (t) = 1 + 0.5 sin (t)
θ2 (t) = 2 + cos(2t)

(30)

The desired trajectory was selected in the following man-
ner

xd = 0.3 sin (5t) + 0.5
`
1− e−t´− 1 (31)

with ẋd (t) calculated as

ẋd = 0.15 cos (5t) + 0.5e−t (32)

During the simulation, the variable step ode45 algorithm
was adopted to solve the involved equation with the max-
imum step size set to 0.0005, the control and adaptation
gains were chosen as follows

α1 = 0.5, α2 = 5, kv = 100, τ = 0.01, ke = 5.

ερ = 0.002, εv = 0.00001

and kp and x(t) were initialized as

kp0 = 0.5, kpdot0 = 0, x0 = 0.

The simulation ran for 5 seconds. Fig. 1 illustrates the
tracking error of the system state, and Fig. 2 demonstrates
the control input while the parameter kp tuning process is
depicted in Fig. 3. As can be seen from the simulation re-
sults, after 2 switches, the system state x tracked well the
desired trajectory xd in less than 0.5 seconds with the con-
trol input u in a very reasonable range. For the parameter
kp, it converged to 0.55 within 0.02 seconds, thus the curve
for the tuning process was only drawn for the time range
[0, 0.05].

Fig. 1 Tracking error
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Fig. 2 Control input

Fig. 3 Parameter tuning

6 Conclusion
A switching logic-based adaptive robust control is de-

signed in this paper to address a class of NPS. Specifically,
we construct a robust type controller whose gain is updated
via a switching logic mechanism to achieve satisfactory per-
formance. Based on a stability analysis that involves the
application of Lyapunov techniques, it has been shown that
the developed control law achieves GUUB tracking result
for the system errors. Future work will focus on implement-
ing the proposed control law experimentally. Future work
will also target on designing more flexible tuning mecha-
nism to achieve better control results.
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