
Vol. 33, No. 6 ACTA AUTOMATICA SINICA June, 2007

Indefinite Linear Quadratic Optimal Control Problem for
Singular Linear Discrete-time System:

Krein Space Method
CUI Peng1 ZHANG Cheng-Hui1

Abstract The finite time horizon indefinite linear quadratic(LQ) optimal control problem for singular linear discrete time-varying
systems is discussed. Indefinite LQ optimal control problem for singular systems can be transformed to that for standard state-space
systems under a reasonable assumption. It is shown that the indefinite LQ optimal control problem is dual to that of projection for
backward stochastic systems. Thus, the optimal LQ controller can be obtained by computing the gain matrices of Kalman filter.
Necessary and sufficient conditions guaranteeing a unique solution for the indefinite LQ problem are given. An explicit solution for
the problem is obtained in terms of the solution of Riccati difference equations.
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1 Introduction

Singular systems have comprehensive practical back-
ground such as power systems[1,2], social economic
systems[3], circuit systems[4], and so on. Great progress has
been made in the theory and application since 1970s[5,6].
The linear quadratic optimal control problem is important
in control theory and has been widely used in practice. The
treatment of the LQ problem for linear systems has been
well studied since the early 1960s. A detailed discussion
of this topic can be found in [7] and [8]. For linear singu-
lar systems, there have also been a lot of excellent results
about the LQ problem[9∼11].

A linear quadratic control problem is indefinite when the
cost weighting matrices for the state and the control are al-
lowed to be indefinite. To our best knowledge, reference [12]
is the first article, which studied a nonstandard quadratic
regulator on a finite time horizon, with indefinite weighting
matrix for the control. Up to now, indefinite LQ theory has
been extensively developed and has found interesting appli-
cations in finance, especially in dynamic macro economics
theory[13]. Many applications for this problem can be seen
in [14], [15], and the references therein.

A lot of literature about indefinite LQ control problem
can be found. The finite horizon nonstandard LQ problem
for an abstract dynamic system, which models a large class
of hyperbolic-like partial differential equations, was studied
in [16]. It provides necessary and sufficient conditions for
finiteness of the value function corresponding to the con-
trol problem. Reference [17] considered the unique control
problem that minimizes a general quadratic cost functional
for a discrete-time system. Necessary and sufficient condi-
tions were derived for the problem under conditions that
a solution exists for an arbitrary finite planning horizon.
The discrete-time infinite-horizon linear quadratic problem
with indefinite cost criterion was considered in [18]. Neces-
sary and sufficient conditions for the existences of optimal
controls were given based on a geometric characterization
of the set of all Hermitian solutions of the discrete-time
algebraic Riccati equation. Reference [19] dealt with the
free-endpoint regular linear quadratic problem with indef-
inite cost functional in the context of linear quadratic op-
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timal control. Necessary and sufficient conditions were es-
tablished for the existence of optimal controls.

Krein space is a kind of indefinite-metric space, which
is different from Hilbert space in certain basic ways; in
particular, it can contain nonzero vectors of zero length
(such vectors are called neutral), as well as subspaces that
contain nonzero vectors orthogonal to all vectors in the
subspace (such subspaces are called degenerate, and such

vectors are called isotropic)[20]. It has been proved that
the Krein space linear estimation theory is efficient for H∞
filtering[21], LQR optimal control[22], and Risk-sensitive
filtering[23]. A complete solution to the LQR problem for
systems with multiple input delays, which is dual to that
of fixed-lag smoothing for a backward system without in-
volving delays, was presented in [22]. Thus, the optimal
controller can be obtained by computing the gain matrices
of the standard fixed-lag smoothing.

In this article, the finite time horizon indefinite LQ op-
timal control problem for discrete time-varying linear sin-
gular systems is investigated. The rest of the article is or-
ganized as follows. An indefinite LQ optimal control prob-
lem for singular systems is given in Section 2. It is shown
that the indefinite LQ problem for singular systems can be
transformed to that for standard state-space systems under
a reasonable assumption and the indefinite LQ problem is
dual to that of projection for a backward stochastic system
in Section 3. A necessary and sufficient condition guaran-
teeing that there is a unique solution for the indefinite LQ
problem is given, and it is shown that the optimal LQ con-
troller can be obtained by computing the gain matrices of
Kalman filter in Section 4. An example is given to show
the validity of the proposed method in Section 5, and some
conclusions are drawn in Section 6.

2 Problem statement

Consider the optimal control problem of linear singular
discrete-time systems

Exxx(k + 1) = A(k)xxx(k) + B(k)uuu(k), Exxx(0) = xxx0 (1)

with quadratic cost

J(uuu(k),xxx(k)) = xxxT(N + 1)ETS0Exxx(N + 1)+
NP

k=0

(

»
xxx(k)
uuu(k)

–T
Q(k)

»
xxx(k)
uuu(k)

–
)

(2)

where xxx(k) ∈ RRRn is the state, uuu(k) ∈ RRRr is the system
input, A(k) ∈ RRRn×n, B(k) ∈ RRRn×r, E ∈ RRRn×n is a sin-
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gular matrix with rank E = p < n. S0 and Q(k) ,»
Q11(k) Q12(k)
QT

12(k) Q22(k)

–
∈ RRR(n+r)×(n+r) are symmetric ma-

trices.
We denote the above quadratic cost optimal control

problem about (1) and (2) as problem P , and define the
set of admissible control-trajectory pairs of problem P as

J = {(uuu(k),xxx(k))|(uuu(k),xxx(k)) satisfies (1)} (3)

Solving the problem P is to find (uuu∗(k),xxx∗(k)) ∈ J such
that

J(uuu∗(k),xxx∗(k)) = min
(uuu(k),xxx(k))∈J

J(uuu(k),xxx(k)) (4)

Remark 1. Problem P , which can be named indefinite
LQ problem, is still an open problem. It is a singular LQ
problem if Q22 ≥ 0 and a regular problem if Q22 > 0, which
have been discussed in many articles.

3 Preliminaries
It is well known that there exists the following restricted

system equivalence(r.s.e.) transformation for system (1):

MEN =

»
Ip 0
0 0

–
, MA(k)N =

»
A11(k) A12(k)
A21(k) A22(k)

–

MB(k) =

»
B1(k)
B2(k)

–
, xxx(k) = N

»
x̄xx(k)
exxx(k)

–

(5)
where M, N ∈ RRRn×n are nonsingular matrices, A11(k) ∈

RRRp×p, A12(k) ∈ RRRp×(n−p), A21(k) ∈ RRR(n−p)×p, A22(k) ∈
RRR(n−p)×(n−p), B1(k) ∈ RRRp×r, B2(k) ∈ RRR(n−p)×r, x̄xx(k) ∈
RRRp, and exxx(k) ∈ RRR(n−p). This transformation changes sys-
tem (1) with the quadratic cost (2) into the system
8
<
:

x̄xx(k + 1) = A11(k)x̄xx(k) + A12(k)exxx(k) + B1(k)uuu(k)
000 = A21(k)x̄xx(k) + A22(k)exxx(k) + B2(k)uuu(k)
x̄xx(0) = [Ip 0]Mxxx000

(6)

with cost

J1(uuu(k), x̄xx(k), exxx(k)) = x̄xxT(N + 1)S1x̄xx(N + 1)+

NP
k=0

(

2
4

x̄xx(k)
exxx(k)
uuu(k)

3
5

T

Q1(k)

2
4

x̄xx(k)
exxx(k)
uuu(k)

3
5)

(7)

where

Q1(k) =

»
N 0
0 I

–T
Q(k)

»
N 0
0 I

–

S1 ,
ˆ

Ip 0
˜
M−TS0M

−1

»
Ip

0

–

We denote P1 as the optimal control problem of system
(6) with cost (7), and define the set of admissible control-
trajectory pairs of problem P1 as

J1 = {(uuu(k), x̄xx(k), exxx(k))|(uuu(k), x̄xx(k), exxx(k))
satisfies (6)} (8)

It is evident that problem P is equivalent to problem P1

according to the definition of an equivalent relation of the
two optimal control problems[10]. Thus, we can solve P1 as
substitute for solving P . Next, we will solve problem P1

instead of problem P .
Assumption 1. [E A(k) B(k)] is causality

controllable[24], i.e.,

rank

»
0 E 0
E A(k) B(k)

–
= n + rankE , k = 0, 1, · · · , N

Lemma 1[24]. System (1) is causality controllable if
and only if the matrix [A22(k) B2(k)] is of full row rank,
k = 0, 1, · · · , N .

Under Assumption 1, the following equation

ˆ
A22(k) B2(k)

˜ » exxx(k)
uuu(k)

–
= −A21(k)x̄xx(k)

has solutions, and its general solution can be expressed as
» exxx(k)

uuu(k)

–
= −Ā+(k)A21(k)x̄xx(k) + eP (k)vvv(k) (9)

where

Ā+(k) ,
»

AT
22(k)

BT
2 (k)

–
([A22(k) B2(k)]

»
AT

22(k)
BT

2 (k)

–
)−1 (10)

is the Moore Penrose inverse of [A22(k) B2(k)]. eP (k) ∈
R(n−p+r)×r is of full column rank, and satisfies

[A22(k) B2(k)] eP (k) = 0 (11)

According to expression on (9), there exists the following
transformation

2
4

x̄xx(k)
exxx(k)
uuu(k)

3
5 = T (k)

»
x̄xx(k)
vvv(k)

–
(12)

where T (k) =

»
Ip 0

−Ā+(k)A21(k) eP (k)

–
. Substituting (9)

into the first equation of (6), we obtain

x̄xx(k + 1) = eA11(k)x̄xx(k) + eB1(k)vvv(k), x̄xx(0) = [Ip 0]Mxxx000 (13)

where

eA11(k) = A11(k)− [A12(k) B1(k)]Ā+(k)A21(k)
eB1(k) = [A12(k) B1(k)] eP (k)

(14)

Under transformation (12), cost (7) is changed identically
into

J2(vvv(k), x̄xx(k)) = x̄xxT(N + 1)S1x̄xx(N + 1)+
NP

k=0

(

»
x̄xx(k)
vvv(k)

–T
Q̄(k)

»
x̄xx(k)
vvv(k)

–
)

(15)

where

Q̄(k) , T (k)TQ1(k)T (k) (16)

Denote P2 as the optimal control problem of system (13)
with cost (15), and define the set of admissible control-
trajectory pairs of problem P2 as

J2 = {(vvv(k), x̄xx(k))|(vvv(k), x̄xx(k)) satisfies (13)} (17)

Investigating the relation between P1 and P2, we have
Lemma 2. If matrix [A22(k) B2(k)], k = 0, 1, · · · , N is

of full row rank, then transformation (12) is a bijection of
J2 onto J1 and the problem P1 is equivalent to problem P2.

Proof. See [25].
It is clear that P2 is an optimal control problem of stan-

dard state-space discrete-time linear system. Lemma 2
shows that if the discrete-time singular system satisfies As-
sumption 1, then its optimal control problem with the in-
definite linear-quadratic cost can be transformed into an
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equivalent indefinite linear-quadratic optimal control prob-
lem for standard state-space discrete-time linear system.
We will show that the indefinite LQ problem is dual to pro-
jection problem for a stochastic backward system. Thus,
the optimal LQ controller can be obtained by computing
the gain matrix of the stochastic backward system.

Let us begin by defining vvv , col{vvv(0), · · · , vvv(N)},
x̄xx , col{x̄xx(0), · · · , x̄xx(N)} and Φi,j , eA11(i) eA11(i −
1) · · · eA11(j), i ≥ j, so that we may use the state equation
(13) to write

x̄xx(N + 1) = ΦN,0x̄xx(0) + Cvvv, x̄xx = Ox̄xx(0) + Γvvv (18)

where

C , (ΦN,1
eB1(0), · · · , ΦN,N

eB1(N − 1), eB1(N))

O ,
ˆ

I ΦT
0,0 · · · ΦT

N−1,0

˜T

Γ ,

2
66664

0
eB1(0) 0

Φ1,1
eB1(0) eB1(1) 0
· · · · · · · · ·

ΦN−1,1
eB1(0) ΦN−1,2

eB1(1) · · · 0

3
77775

(19)

We denote

Ī ,

0
BBBBBBBBB@

I 0
0 I

I 0
0 I

. . .
. . .

I 0
0 I

1
CCCCCCCCCA

∈ RRR2N×2N (20)

where the (2i−1)th row vector of Ī is (

(i−1)z }| {
0, · · · , 0, I,

(2N−i)z }| {
0, · · · , 0)

and the (2i)th row vector of Ī is (

(N+i−1)z }| {
0, · · · , 0, I,

(N−i)z }| {
0, · · · , 0), i =

1, · · · , N , and

Q̄ , ĪTdiag{Q̄(0), Q̄(1), · · · , Q̄(N)}Ī
,
„

Q̄11 Q̄12

Q̄T
12 Q̄22

«
(21)

where Q̄ij = diag{Q̄ij(0), Q̄ij(1), · · · , Q̄ij(N)}. Then, J2

can be written as follows.

J2 = (ΦN,0x̄xx(0) + Cvvv)TS1(ΦN,0x̄xx(0) + Cvvv)+»
x̄xx(0)

vvv

–T »O Γ
0 I

–T
Q̄

»O Γ
0 I

– »
x̄xx(0)

vvv

–

=

»
x̄xx(0)

vvv

–T »
ΦT

N,0S1ΦN,0 +OTQ̄11O
∗

ΦT
N,0S1C +OTQ̄11Γ +OTQ̄12

CTS1C + ΓTQ̄11Γ + ΓTQ̄12 + Q̄T
12Γ + Q̄22

– »
x̄xx(0)

vvv

–
(22)

Introduce the following backward stochastic system as-
sociated with (13) as follows.


ξξξ(k) = eAT

11(k)ξξξ(k + 1) + ωωω(k)

ζζζ(k) = eBT
1 (k)ξξξ(k + 1) + θθθ(k)

(23)

where ξξξ(N + 1), ωωω(k) and θθθ(k) are Krein space variables

and white noises with zero means and covariances

*0
@

ξξξ(N + 1)
ωωω(k)
θθθ(k)

1
A ,

0
@

ξξξ(N + 1)
ωωω(j)
θθθ(j)

1
A
+

=

0
@

S1 0 0
0 Q̄11(k)δkj Q̄12(k)δkj

0 Q̄T
12(k)δkj Q̄22(k)δkj

1
A

k, j = 0, 1 · · · , N

(24)

where δkj =


1, k = j
0, k 6= j

is the Kronecker Delta function.

Denoting ωωω ,

0
B@

ωωω(0)
...

ωωω(N)

1
CA, θθθ ,

0
B@

θθθ(0)
...

θθθ(N)

1
CA, ζζζ ,

0
B@

ζζζ(0)
...

ζζζ(N)

1
CA, we can obtain the following lemma with the

above Krein space model.
Lemma 3. Under the Krein space model (23), J2 has

the following quadratic form

J2 =

»
x̄xx(0)

vvv

–T »
Rξξξ0 Rξξξ0ζζζ

Rζζζξξξ0 Rζζζ

– »
x̄xx(0)

vvv

–
(25)

where
»

Rξξξ0 Rξξξ0ζζζ

Rζζζξξξ0 Rζζζ

–
,
fi»

ξξξ(0)
ζζζ

–
,

»
ξξξ(0)
ζζζ

–fl
(26)

Proof. According to (23) and (19), ξξξ(0) and ζζζ can be
written as follows:

ξξξ(0) = ΦT
N,0ξξξ(N + 1) +OTωωω, ζζζ = CTξξξ(N + 1) + ΓTωωω + θθθ

Therefore, we can easily obtain (25) by using (24). ¤
In view of Lemma 3, if Rζζζ is invertible, the minimizing

solution of J2 with respect to control inputs v(k) is now

readily given by[20]

v̂vv = −R−1
ζζζ Rζζζξξξ0x̄xx(0)

and thus

J2 = x̄xxT(0)P0x̄xx(0) + (vvv − v̂vv)TRζζζ(vvv − v̂vv)

where P0 =< x̄xx(0) − ˆ̄xxx(0), x̄xx(0) − ˆ̄xxx(0) >, and ˆ̄xxx(0) is the
projection of x̄xx(0) onto the linear space L{ζζζ(0), · · · , ζζζ(N)}.

4 Main result

In this section, we shall give an explicit solution to the
LQ problem for system (1). In view of the results of the pre-
vious section, the gain matrix −R−1

ζζζ Rζζζξξξ0 of the controller
is the negative transpose of the gain matrix in estimating
the random variable ξξξ(0) from ζζζ. Therefore, to give a so-
lution to the optimal LQ problem, we shall calculate the
gain matrix Rξξξ0ζζζR−1

ζζζ .
By applying the Kalman filtering formulation for the

backward system (23), the filtering estimate is calculated

directly as[20]

ξ̂ξξ(k) = eAT
11(k)ξ̂ξξ(k + 1) + Kp(k)εεε(k), ξ̂ξξ(N + 1) = 000 (27)

where
εεε(k) = ζζζ(k)− eBT

1 (k)ξ̂ξξ(k + 1)
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is the innovations,

Kp(k) = [ eAT
11(k)P (k + 1) eB1(k) + Q̄12(k)]Q−1

ε (k) (28)

and
Qε(k) = eBT

1 (k)P (k + 1) eB1(k) + Q̄22(k)

are the Kalman gain and innovations variance, respectively,
and P (k) satisfies the backward-time Riccati recursion:

P (k) = eAT
11(k)P (k + 1) eA11(k) + Q̄11(k)−

Kp(k)Qε(k)KT
p (k)

(29)

with P (N + 1) = S1.
Now (27) may be rewritten as

ξ̂ξξ(k) = Fp(k)ξ̂ξξ(k + 1) + Kp(k)ζζζ(k) (30)

where Fp(k) = eAT
11(k)−Kp(k) eBT

1 (k).
The recursion (30) can be solved to yield

ξ̂ξξ(0) = [Kp(0), Fp(0)Kp(1), · · · , Fp(0, N − 1)Kp(N)]×0
B@

ζζζ(0)
...

ζζζ(N)

1
CA

(31)
where Fp(i, j) = Fp(i)Fp(i + 1) · · ·Fp(j), i < j.

Thus, the solution to the LQ problem is given by the
negative of the transpose of the above solution.

0
BBB@

v̂vv(0)
v̂vv(1)

...
v̂vv(N)

1
CCCA = −

0
BBB@

KT
p (0)

KT
p (1)FT

p (0)
...

KT
p (N)FT

p (0, N − 1)

1
CCCA x̄xx(0)

But this implies

v̂vv(0) = −KT
p (0)x̄xx(0)

and
v̂vv(1) = −KT

p (1)FT
p (0)xxx10 = −KT

p (1)x̄xx(1)

and continuing in a similar fashion

v̂vv(i) = −KT
p (i)x̄xx(i), i = 0, 1, · · · , N (32)

Equations (28), (29), and (32) constitute the solution to
the indefinite LQ control problem. Of course, the condition
for a minimum over {v(i)} will be discussed. Next, we will
give necessary and sufficient conditions that there exists a
unique solution for a minimum over {v(i)}.

Lemma 4[20]. v̂vv = −R−1
ζζζ Rζζζξξξ0x̄xx(0) is a unique minimum

if and only if Rζζζ > 0, and Rζζζ > 0 is equivalent to Qε(k) >
0, k = 0, 1, · · · , N .

Proof. The proof of the first part involves the (lower-

upper) triangular factorization of

»
Rξξξ0 Rξξξ0ζζζ

Rζζζξξξ0 Rζζζ

–
and is

straightforward. The equivalence of Rζζζ > 0 and Qε(k) >
0, k = 0, 1, · · · , N can be obtained by Schur complement.

¤
Therefore, the Krein space Kalman filter corresponding

to Rζζζ allows us to recursively check the above condition via
the innovations Gramian.

Remark 2. Rζζζ ≥ 0 or Qε(k) ≥ 0, k = 0, 1, · · · , N just
need to be satisfied if v̂ has not to be a unique minimum.

Remark 3. The control input v̂vv = −R−1
ζζζ Rζζζξξξ0x̄xx(0) is

referred to as the optimal open-loop control because it

only depends on the initial state, x̄xx(0). The control in-
put v̂vv(i) = −KT

p (i)x̄xx(i), on the other hand, is referred to
as the optimal closed-loop control because it depends only
on the current state, x̄xx(i). Note that at any given time, i,
the optimal closed-loop control input, v̂vv(i) = −KT

p (i)x̄xx(i),
coincides with the optimal open-loop input if and only if
all previous choices of the control input were also optimal.

We can now summarize the results obtained so far in the
following theorem.

Theorem 1. Under Assumption 1, the optimal control
problem P has a unique solution if and only if Qε(i) >
0, i = 0, 1, · · · , N . The optimal control can be synthesized
as the linear state feedback such that the optimal closed-
loop system is casual, i.e. its state trajectory is causally and
uniquely determined by the initial value. Thus, problem P
has a unique solution determined by the initial value. The
optimal LQ controller can be shown as uuu(i) = K(i)xxx(i),
where

K(i) = [0 Ir]

»
Ip 0

−Ā+(i)A21(i) eP (i)

–»
Ip

−KT
p (i)

–
(Ip 0)N−1

Proof. It is easily shown by (12) and (32). ¤
Remark 4. It is obvious that the method discussed in

the article can be used to deal with the indefinite LQ op-
timal control problem for normal linear systems, which are
viewed as special cases of system (1) when E is nonsingular.

5 Example

Consider the optimal control problem of linear singular
discrete-time system (1) with quadratic cost (2), where

E =

»
1 0
0 0

–
, A =

»
2 1
1 −1

–
, B =

» −2
1

–

S0 =

»
2 1
1 −1

–
, Q =

2
4
−1 0 1
1 1 0
1 0 −2

3
5

x0 = 1, N = 7

According to the method above, we can compute the gain
matrices of controller as follows.

K(0) = 3.5000, K(1) = 3.5002, K(2) = 3.5007
K(3) = 3.5029, K(4) = 3.5116, K(5) = 3.5455

K(6) = 3.6667, K(7) = 4

and

J(u∗(k), x∗(k)) = x̄T(0)P0x̄(0) = 3

6 Conclusion

In this article, the indefinite LQ optimal control prob-
lem for a class of discrete-time linear singular systems has
been discussed. It has been pointed out that this prob-
lem is equivalent to an indefinite LQ problem for standard
state-space discrete-time linear systems under Assumption
1. The indefinite LQ problem for standard state-space sys-
tems is dual to that of projection for a backward stochastic
system. Thus, the optimal LQ controller can be obtained
by computing the gain matrices of linear estimation. Nec-
essary and sufficient conditions guaranteeing a unique so-
lution for the indefinite LQ problem are given.
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