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A Dynamic Regulation and Scheduling Scheme for

Formation Control
CHEN Yu-Qing1 ZHUANG Yan1 WANG Wei1

Abstract This article is concerned with cooperative control problems in formation of mobile robots under the nonholonomic
constraints that certain geometrical constraints are imposed on multiple mobile robots throughout their travel. For this purpose, a
new method of motion control for formation is presented, which is based on the dynamic regulation and scheduling scheme. It is
attractive for its adaptability to the formation structure and desired trajectory. The quality of formation keeping can be evaluated
by the instantaneous errors of formation offset and spacing distance. Some kinematics laws are developed to regulate and maintain
the formation shape. Simulation results and data analysis show the validity of the proposed approach for a group of robots.
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1 Introduction

Coordination of multiple robots has been considered a
promising but complicated research area. Robot forma-
tion is one of the fundamental cooperative control prob-
lems, which demands that the group of mobile robots estab-
lish and maintain some predetermined geometrical shape
during moving to their destination. The formation con-
trol techniques can be used in many tasks, such as ob-
ject manipulation, space exploration, and search-rescue[1].
However, the nonholonomic characteristic of mobile robots
increases the complexity of formation control. Many strate-
gies have been proposed and tried to resolve the prob-
lem. Desai and Ostrowski[2,3] presented a leader-follower
approach and derived the kinematics equations of forma-
tion to maintain the desired distances and relative ori-
entations among the robots. Lewis[4] and Ren[5] stud-
ied the virtual structure approach, which controled the
group by a virtual framework without leaders. Balch[6]

and Lawton[7] proposed a behavior-based method, and the
formation shape was maintained by many cooperative be-
haviors of the robot team running to the destination. Also,
Belta[8] and Fujibayashi[9] studied the kinetic energy shap-
ing method and virtual springs algorithm, respectively.
Sanchez[10] used the sliding mode control method in forma-
tion, which was the extension of existing trajectory tracking
of mobile robots. These formation methods can be clas-
sified as mathematic model[2,3,8∼10] and nonmathematic
model[4∼7] methods. In addition, most of previous works
considered issues in simple Cartesian coordinates only.

In this article, we pursue a new formation approach in
which control inputs are easily computable and control
laws are decentralized so as to accommodate a flexible and
modular dynamic framework. There are three key features
in our approach: 1) A special formation coordinate system
is constructed, which especially suits the geometric infor-
mation describing piecewise-smooth motion trajectory and
easily copes with the transformation of relative positions.
2) The desired formation shape does not consider the ori-
entation of the reference robot (leader) so as to avoid the
motion fluctuations of followers. The orientations of in-
dividuals are only used to predict the motion trajectory
of formation. 3) By the integration of distributed control
laws, the adaptability can be achieved by altering the ad-
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justable formation parameters, so that the formation struc-
ture and movement speed are adaptive to the curvature of
the reference trajectory and formation errors.

The goal of this article is to present a formation keeping
mechanism based on a dynamic regulation and scheduling
scheme. Because the formation control model can hardly be
accurate under the nonholonomic constraints of the mobile
robots, the motion trajectories are approximated as some
piecewise arcs, and the formation states of the robots are
updated synchronously in instantaneous polar coordinates.
The individual trajectory can be calculated independently
by each robot, and the group is guaranteed to converge to
its desired pose.

2 Dynamic formation framework

Differing from the single robot control, the multirobot
formation control should make the robots′ poses not only
meet the nonholonomic constraints but also satisfy the
holistic-formation shape constraints. The path of the group
is planned by a leader, which is a member in the formation
in our distributed formation control method. Generally,
path planning strategies can be based on probability[11],
fuzzy control[12,13], reinforcement learning[14], etc. How-
ever, they are not the emphases of this paper. We focus
on the strategies of maintaining the relative poses among
the followers and their leader when the leader moves along
its desired trajectory. The trajectory of the group may be
offered in advance or be planned real time by the leader.
The leader approaches to its desired trajectory with arc
trajectory of curvature k(t), so the real trajectory must be
piecewise-smooth. Simultaneously, the followers adjust and
maintain the formation shape with piecewise-arc trajectory.

Note that, approaching to its trajectory, leader will also
consider the movement characters of the whole formation.
So the speed of group may be immolated, however, for-
mation accuracy can be improved. And the speed of any
robot can be considered invariable in a short time interval
because it satisfies the piecewise-constant condition.

In formation control, the relative poses of robots are the
most important parameters. To express the relative poses
parameters, a formation coordinate system needs to be con-
structed firstly (see Fig. 1).

Once the linear speed vp(t) and angular speed ωp(t) of
leader Rp are determined, the curvature center O of the
current instantaneous trajectory can be affirmed. Forma-
tion coordinate system is thus created with O as its origin
and the direction of polar axis in global coordinates as its
direction of polar axis. Note that it is an instantaneous
polar coordinate system and may vary with the movement
of the group. The instantaneous trajectory of Rp is called
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Fig. 1 Triangle formation in formation coordinate system

the reference trajectory, and the direction of trajectory is
the reference direction in this formation coordinate system.
Also, passing through its current position, each follower
has a virtual trajectory that is parallel to the reference
trajectory. This virtual trajectory is called its following
trajectory.

Formation shape can be described by the polar coordi-
nates. For example, in this case, the coordinate matrix of
the triangle formation depicted in Fig. 1 can be defined as

M =

2
4

vp/ωp λp − sign(ωp)π/2
ρf1 θf1

ρf2 θf2

3
5 (1)

where λp denotes the orientation of leader, ρfi, θfi(i = 1, 2)
are polar coordinates of followers in formation coordinate
system. Though the formation shape may be defined by
M uniquely, it is not a vivid presentation for the rela-
tive poses. To visualize the formation shape, the matrix
M can be transformed into two relative-distance matrixes
Dm×m = {dij}i,j=1,··· ,m and Lm×m = {lij}i,j=1,··· ,m.
Here, D denotes an offset matrix and L is a spacing ma-
trix. dij(i, j = 1, · · ·m) is the offset from robot i to the
following trajectory of robot j. lij is the spacing distance
from robot i to robot j. Assume that dij > 0 as robot j
at the right-side of the reference trajectory of robot i in
the reference direction. On the contrary, dij < 0 as robot
j at the left-side of that. Thus, different signs of offsets
mean the follower′s different-side positions from the refer-
ence trajectory.

The headings of robots are given by the orientation vec-
tor λλλ = (λi) (i = 1, · · ·m). The states of formation can
thus be represented by offset matrix D , spacing matrix
L, and orientation vector λλλ. For a special regular triangle
formation, its desired offset matrix and spacing matrix can
be expressed as

Q(D) =

2
4

0 d+ d−
d− 0 2d−
d+ 2d+ 0

3
5 , Q(L) =

2
4

0 ld ld
ld 0 l∗d
ld l∗d 0

3
5

where d+ = −d− > 0 equals the given desired offset from
followers to their reference trajectory, ld denotes the desired
spacing distance between any two robots, and l∗d = ld =
2d+. Obviously, Q(D) and Q(L) are symmetrical matrixes
with main diagonal entries zero.

Especially, for the geometric formation shape, the de-
sired offset dq and the desired spacing distance ld should
be appropriate. A very small value of ld may cause col-
lision between robots, and a very big value of dq may af-
fect the moving speed of the whole group. So, in prac-

tical formation control, they have their limits, viz. dq ∈
[dmin, dmax], ld ∈ [lmin, lmax]. Furthermore, the offset is
relevant to the leader′s moving characters, and the vari-
able desired d is helpful to a more steady and rapid forma-
tion. But the offset can be random if the formation goes a
straight line. In general, the proper offset should be conve-
nient to the relative observation among individual robots,
also the configuration, capability, and task demand of for-
mation should be considered. We may calculate the offset
error and spacing distance error as follows.

e(d) = |d− dq|, e(l) = |l − ld| (2)

Once the desired matrixes Q(D) and Q(L) have been de-
termined, the whole formation error e(F ) can be evaluated
by the geometrical mean value as follows.

1

2

s
(
X
i>j

|(D −Q(D))ij |)2 + (
X
i>j

|(L−Q(L))ij |)2 (3)

The formation error e(F ) should be reduced to its
permitted error band, so an adaptive formation control
framework should be constructed to adjust the formation
network-topological architecture. In the framework, the
offset and spacing distance errors are restricted by control
law OTR (Offset regulation) and SDR (Spacing distance
regulation), respectively.

The dynamic formation framework is shown in Fig. 2. e1

and e2 are the given bounds of comparison error kle(l) −
kde(d) and the whole formation error e(F ) , respectively,
where kl, kd are comparison coefficients of e(l) and e(d). R
is the control object, viz. formation system, and S is the
states of robots in formation. c1 denotes that the compari-
son result is greater than or equal to zero; on the contrary,
c2 denotes that is less than zero.

Fig. 2 Abstract view of dynamic formation framework

The formation framework shows the regulating process
of formation errors. When formation error e(F ) is greater
than the given error bound e2, offset error e(d) and spacing
distance error e(l) will be compared, thus, an appropriate
formation control laws will be selected between the OTR
and SDR in different time-step. Until e(F ) is less than e2,
the SDR is used to maintain the formation shape. It allows
us to specifically regulate the formation′s shape adaptively
to accommodate the nonholonomic constraint of robots.

3 Formation control laws

The formation is constructed by many mobile robots,
which will be regarded as an integral body. But any robot
must have its own role, either leader or follower, in forma-
tion. The decentralized formation control laws described
in this article are used by each robot to keep the formation
while driving the group to a desired destination. Thus,
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each robot should consider its own motion constraints and
adopt the proper control laws to the role.

The desired trajectory of leader is relevant to the cir-
cumstance, and the motion state of leader is determined
by the curvature of trajectory. Furthermore, the follower
must adapt to the state of its leader in real time and adjust
the topological structure of formation. Thus, a formation
control scheme can be realized.

3.1 Formation reference adjustment

In general, a single robot in the formation cannot be
operated at a random speed. Once the trajectory of leader
is calculated either before or online, it can be approximated
by many segments of arcs. For a known trajectory, proper
velocity of leader is helpful to the stability of formation
keeping.

Assuming that the discrete time step is T , the periodic
curvature of the desired trajectory of leader may be denoted
by a piecewise-constant kp(t) , (t = T, 2T · · · ) . Then,
the trajectory of the leader is known as f(kkk, t) ∈ SE(2) ,
here, kkk = {ki}i=1,2···n. Theoretically, the piecewise-smooth
trajectory can approach to any kind of straight path or arc
path. The desired linear speed of the leader v̂p(t) is defined
as

v̂p(t) =
2vp max

1 + e|kp(t)| (4)

where the numerator vp max is the feasible maximum linear
speed of leader. Also, it can be seen that it is an approxi-
mate inversely proportional relationship between v̂p(t) and
kp(t). In addition, to avoid the jump reaction of speed
caused by discontinuity of curvature, the real speed is de-
fined as

vp(t) = vo + ∆vpα2
i (4− 3αi), ωp(t) = kp(t)vp(t) (5)

where vo is the original linear speed of the leader, ∆vp =
v̂p − vo and αi = mi/m (mi = 1, 2, · · ·m) , is a smoothing
constant.

Thus, the leader may track the trajectory with the con-
trol input up(vp(t), ωp(t)). So that it will move quickly at
a straight path and slow down during turning. Note that
this motion characteristic is just conformable to the general
practical case.

For any determinate formation, the valid curvature of
the reference trajectory f(kkk, t) has its maximum kmax in
formation coordinate system. That means the reference
trajectory whose curvature satisfies kp(t) > kmax should be
synthesized. So a curve fitting method is used to minimize
the curvature kp(t) in this section. The curve fitting process
fits equations of approximating curves to the sampling data
on f(kkk, t). The number N of sampling data satisfies

N ≥ 5lk/(π
1

n

nX
i=1

1/ki) (6)

where lk is the length of f(kkk, t) to be fitted. Note that under
the dynamic formation framework, the type of fitting curves
g(kkk, t) should be circular arc whose curvatures are less than
kmax. Furthermore, the first and last sampling points must
be on the fitting curves to assure the continuity of the valid
reference trajectory. Nevertheless, for a given data set, the
fitting curves of the given type are generally not unique.
Thus, a curve with a minimal deviation from the sampling

data is desired. This best-fitting curve can be obtained by
the method of the least squares, i.e.,

min
k∈[0,1/d]

||g(kkk, t)− f(kkk, t)||2 (7)

Assume the trajectory f(kkk, t) is fitted by h segments of
circular arcs, here h is called fitting particle size. Then,
||g(kkk, t)− f(kkk, t)||2 can be defined as

J(kkk, t) =

vuut
hX

i=1

nX
j=1

(g(kkk, t)ij − f(kkk, t)ij)2 (8)

where J(kkk, t) is the 2-norm of the polar radiuses′ distances
between the planned trajectory and the fitting trajectory
at the same polar angles. So the fitting curvature that
minimizes J(kkk, t) is the desired fitting curvature, which is
the valid reference trajectory of leader in the formation
coordinate system.

3.2 Formation state update

In this article, the instantaneous formation coordinates
are suitable to depict the motion state with dynamic for-
mation framework. But the formation state in different for-
mation coordinate system should be updated in real-time,
which is relevant to the renovation of formation coordinate
system. Note that the formation coordinate system de-
pends on not only the current pose of leader but also the
magnitude of the control speed uuup(vp(t), ωp(t)). However,
no matter how uuup changes, the new origin of formation co-
ordinate system will not deviate from current polar radius
of leader or its extension line at the switching point of cur-
vature kp. So the desired piecewise-smooth trajectory is
continuous all the while.

Let the discrete-time dynamic model of the formation
system be żzz = f(zzz,uuuf (t)), where f(·) is nonlinear system
function, zzz is the system state, and uuuf (t) = [vf (t), ωf (t)]T is
the system input. The curvature kp(t) of the leader varies
according to the path planning method. Simultaneously,
the origin of the formation coordinate system transfers from
Õ to O. Thus, there must exist a nonlinear time-varying
coordinates transformation T : zzz = T (z̃zz, t), where zzz = (ρ, θ)

and z̃zz = (ρ̃, θ̃) are generalized polar coordinates in the new
and original coordinate system, respectively. So, the polar
transformation satisfies

‚‚‚O − Õ
‚‚‚ = | k̃p − κkp

kpk̃p

| (9)

θOÕ = θc − 1

2
µ(1− κ)π (10)

where κ, µ are two-valued variables and satisfy

κ =


1 ω̃pωp ≥ 0
−1 ω̃pωp < 0

, µ =


1 ωp ≤ 0
−1 ωp > 0

Formation coordinate system transforms with the move-
ment of the leader, and formation state is updated syn-
chronously. Assume s̃ss = (ρ̃p, ρ̃d, ρ̃f , θ̃p, θ̃d, θ̃f )T is the for-

mation state vector in original coordinate system Õ and
its updated vector is sss = (ρp, ρd, ρf , θp, θd, θf )T in new for-
mation coordinate system O. Here, ρp, θp belong to the
current position zzzp of leader, and their updating equations
can be summarized as
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»
ρp

θp

–
=

»
1/|kp|

θ̃p − 0.5µ(1− κ)π

–
(11)

In addition, zzzd(ρd, θd) is the desired position of follower
and the new desired position state may be calculated ac-
cording to following equation,

»
ρd

θd

–
=

" q
ρ̃2

d + ∆ρ2 − 2ρ̃d · |∆ρ| cos(θ̃p − θ̃d + µσπ)

θp + µ arccos((ρ2
p + ρ2

d − l2d)/2ρpρd)

#

(12)

where ∆ρ = ρ̃p − κρp, and σ is a two-value variable and
satisfies

σ =


1 ω̃pωp > 0 ∩ ρp ≥ ρ̃p

0 other

Simultaneously, the current position zzzf (ρf , θf ) of fol-
lower can be updated as

»
ρf

θf

–
=

" q
ρ̃2

f + ∆ρ2 − 2ρ̃f · |∆ρ| cos(θ̃f − θ̃p − µσπ)

θp − asin(ρ̃f sin(θ̃f − θ̃p − 0.5(κ + 1)π)/ρf )

#

(13)
As can be seen, the updating equations of formation

state are different if the magnitude of kp(t) alters during
the traveling of the robot group, they are shown by the
control parameters κ, µ, and σ. Once the formation state
sss = (ρp, ρd, ρf , θp, θd, θf )T has been updated, the forma-
tion shape regulation may be created to eliminate the error
e(F ).

3.3 Formation shape regulations

The geometry-based formation control approach is com-
prehensible, but the main difficulty is to deal with the speed
uncertainty of the leader.

The offset of the follower is one of the key factors to
show the formation structure in formation coordinates. In
general, the initial poses of individual robots are random,
and regulating the initial headings firstly is necessary to
simplify the offset control rules. In other words, all the
initial headings should be turned to the desired formation
orientations. Note that the error of offset should be elimi-
nated in a progressive process.

Fig. 3 interprets the quantities of formation shape regu-
lation graphically. Õp denotes the origin of the formation
coordinate system, and Of is the origin of the follower po-
lar coordinates. P denotes the position of the leader, D is
the desired following position, and F is that of the follower
at the present time. d is the original offset, and dq is the
desired offset. G is the real regulated target of the follower.
Offset d can be deduced by

d = (ρf − ρp)sign(ωp) (14)

To adjust the offset, the formation control system should
satisfy the differential equations

»
ω̇

ḣ

–
=
ˆ

k1 k2

˜ » 1
−sign(ωp)

–
(d− dq) (15)

where k1, k2 are the user-selected controller gains and 0 ≤
k1, k2 ≤ 1. sign(·) is a symbolic function. d and dq are the
current offset and its desired value, respectively. (15) leads
to dynamic equations of the form

ω̇ = ωf − ωp, ḣ = h− h̃ (16)

where ω̇ is substituted by the difference of the angular speed
between follower and leader, and ḣ is substituted by the
difference of polar radius between coordinate systems Õp

and Of . Thus, the following results can be derived

ωf = k1(d− dq) + ωp

vf = (−k2sign(ωp)(d− dq) + Rn)(k1(d− dq) + ωp)

Note that the followers should not go ahead of their
leader in our scheme, so the following inequality constraint
must be satisfied:

(θp − θ̂f )sign(ωp) ≥ 0 (17)

where θ̂f is the polar angle of the real target G in coordi-

nates Õp . Finally, the control inputs of the followers can
be obtained from the following offset regulation OTR:

»
ωf

vf

–
=

2
4

k1(d− dq) + ωp

−k1k2sign(ωp)(d− dq)
2 + k1(d− dq)Rn+

ωpRn − k2sign(ωp)(d− dq)ωp

3
5

(18)

where k1, k2 ∈ [0, 1] are control gains, which indicate the
rate of convergence in offset regulation.

As can be seen in Fig. 3, spacing distance l between two
robot locations P and F is regulated to its desired distance
lq. However, the adjustable process of spacing distance
should be progressive in our approach, which can be real-
ized by the following recursion.

Fig. 3 Graphical depiction of formation shape regulation

ld = (r1ld + r2lq)/

2X
i=1

ri (19)

where r1 and r2 are the adjustable spacing distance coef-
ficients. Thus, desired following angle θd can be updated
by

θd = θp + µ arccos((ρ2
p + ρ2

d − l2d)/2ρpρd) (20)

Under the dynamic formation framework, the controlled
quantities of the leader are piecewise constants. Thus, the

desired value of following angle θd must satisfy θ̂d(t) =
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θd(t)+ωp (t) t . As a result, the spacing distance regulation
SDR can be summarized as

»
ωf

vf

–
=

1

T

»
(θ̂d − λf − π

2
+ ηπ)

ρf · (θ̂d − λf − π
2

+ ηπ) tan(θ̂d − θf )

–

(21)

where η = 0 if ωp ≤ 0, and η = −1 if ωp > 0. Thus, the
states updating and SDR may adjust the formation shape
and keep it. In addition, the speed and reachable location
of the robot are limited, so we must assure the poses of
robot controlled by input uf (vf (t), ωf (t)) satisfy the corre-
sponding nonholonomic constraints synchronously.

State updating (11) and (13) and formation shape regu-
lation (18) and (21) are the main conclusive control laws.
Note that the adaptability to any special formation shape
can be shown from the flexible coefficients ki and ri, and
meet the different initial formation errors and the require-
ment of different control precision.

4 Simulation results

To validate the formation control based on the dynamic
formation framework, this section presents the simulation
results. Assume that each robot travels under the nonholo-
nomic constraint with a maximum velocity of 1m/s. the
distance between two driving wheels is 0.4m, and control
period is 1s.

Many experiments have been done in our mobile robots
simulation platform. Here, a typical triangle formation ma-
nipulation is given. Two robots follow the leader robot
in a distributed control model. In initial formation coor-
dinate system, the leader is positioned at the initial lo-
cation (12, 0.5π, 0), it moves to its destination along
the given curvilinear trajectory g(t) ∈ SE(2). Simulta-
neously, two followers start off from (7, 0.6π, 0.8π) and
(22, 0.55π, 0.5π), respectively. The desired offset between
followers and leader trajectory is 2m and -2m, and the de-
sired spacing distances are 4m. Simulation parameters are
shown in Table 1.

Table 1 Parameters for Simulation

V a T l1q(l2q) kl kd d1q d2q

1(m/s) 0.4(m) 1(s) 4(m) 2 3 2 -2

Figs. 4∼ 8 show this maneuver when the leader runs
along the curvilinear path. Note that the control parame-
ters ki and ri (i = 1, 2) should be selected according to the
current formation errors and motion capability of robots.

Figs. 4 and 5 demonstrate the convergent curves of key
formation parameters di(i = 1, 2) to their desired values.
Here, the dotted lines show the varied values when ki(i =
1, 2) are constant, where the continuous lines show the regu-
lated values when ki(i = 1, 2) are functions of current error
e(di). It can be seen that d1 can be regulated to the ap-

proximate value of desired distance with k1 = 0.2e−0.8e(d1),
k2 = 0.6e0.7e(d1) when t = 48s that is earlier than the reg-
ulation process with k1 = 0.02, k2 = 0.6 in about 16 sec-
onds. Similarly, it is almost the same to the regulation of
d2. Also, the errors of offsets d1 and d2 decline about 3m
and 7m independently. Thus, if k1 is a constant, though
the offset can converge to its desired value, the converging
speed is slow because k1 must be small enough to adapt to
the limitation of robot movement speed and the magnitude

of initial formation errors.

Fig. 4 Comparison of offset d1 with different ki(i = 1, 2)

Fig. 5 Comparison of offset d2 with different ki(i = 1, 2)

However, with the decreasing of the offset error, the small
constant k1 will also limit the regulating speed. In conse-
quence, k1 should be varied with the offset error e(di). k2 is
a direct proportion function of offset e(di). Thus, if e(di) is
increasing, regulation OTR will accelerate the converging
with the increasing parameter k2. However, a very big k2 is
not helpful to the regulation of spacing distance, so a trade-
off value should be considered. Generally, k1 and k2 satisfy
the ranges k1 ∈ [0, 1] and k2 ∈ [0, 2], and they enlarge
or reduce the offset errors. The variations of parameter
ki(i = 1, 2) ensure not only that the formation errors are
decreased gradually but also the control inputs are within
the practicable ranges of real robots all the time. With the
regulation of offset, the spacing errors of robots gradually
become the main errors in formation control. Then, the
spacing distances l1 and l2 should be adjusted to their de-
sired distances. However, the offset may be adjusted in an-
other time according to the dynamic formation framework
when the formation error is less than the given limit (see
Fig. 5, t = 48s). Thus, the formation errors asymptotically
converge to zero.

Figs. 6 and 7 show that the regulation speed of spacing
distance can be controlled by the given parameters r1 : r2.
The spacing distance l1 increases slowly at the beginning
when the vehicles are controlled by OTR firstly under the
condition kle(l) <kde(d) until the time t = 40s (t =30s for
l2). After that, it decreases quickly as controlled by the reg-
ulation SDR. Here, the dotted line shows the varied values
of spacing distance when r1 : r2 = 8 : 1, and it is a gentle
regulation process and the control speed maximum val-
ues are small. While the regulation time can be decreased
about 30s when r1 : r2 is decreased to 1 : 3. Here, the
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resultant control inputs can always remain bounded at a
reasonable ratio. Thus, spacing distance li is regulated by
the regulation SDR, and the regulation speed can be varied,
i.e., the regulation speed increases with the decreasing of
the control ratio r1 : r2. However, the regulation speed can
not be infinity. A reasonable ratio should be selected ac-
cording to the motion capability of the real vehicles. Con-
sequently, the flexibility of controlled ratio parameters is
especially applicable to the formation control of heteroge-
neous robots.

Fig. 6 Comparison of l1 with different ratio r1 : r2

Fig. 7 Comparison of l2 with different ratio r1 : r2

Fig. 8 Path of a typical triangle formation maneuver

With simulation parameters defined in Table 1, initial
poses and curvilinear trajectory g(t) mentioned above, the
variable gain ki is the same as the parameter selected in
Figs. 4 and 5, and r1 : r2 = 2 : 1, a visual representation of

geometric positions is showed in Fig. 8. The initial and final
locations of the mobile robots are depicted by the symbols
◦, and the movement trajectories are depicted by a series
of points, respectively. In addition, many synchronized po-
sitions of the three individual robots are connected each
other, they illustrate the size variation of the formation
shape during the traveling of the robots.

Consider the case of a line formation approaching a nar-
row passageway through obstacles. In these experiments,
the leader performs an exploratory mission while the forma-
tion changes in a decentralized fashion as required by the
environment. In the presence of obstacles, the pair-wise
robots should switch to appropriate mode to negotiate the
obstacles while going to their destination.

Shown in Fig. 9 are the initial and the final configura-
tions of these robots and their paths. In line formation
control, the offset d should tend to the spacing distance
l. The left scenario is almost the same as the right one,
but the passageway width is smaller than the latter. In
the left, the formation shape should be changed in order
to squeeze through a narrow passage. Here, the formation
change is performed by changing only the shape variables
and not the planned trajectories. This strategy also shows
the flexibility of formation control under our dynamic for-
mation framework. As it can be seen, the group avoids
the static obstacle at district a, and the offset reduces to
1m from 5m at district b. Note that the velocity of fol-
lower increases suddenly at district b, which is caused by
the changing of desired shape variables and the switching of
the control regulations, as can be seen in Fig. 10. However,
there is no collision among the robots during this process
of cooperative collision avoidance. Having crossed the nar-
row passageway, the follower recovers its original relative
position to the leader rapidly.

The right scenario in Fig. 9 shows the case that the for-
mation size is smaller than the gap between obstacles, thus,
the formation parameters can be invariable with a rigid for-
mation shape. After the robots avoid the first obstacles at
district a, the leader detects the passage and finds that the
passage width is more than 5m. So it triggers another pro-
cess of holistic collision avoidance. This case is different
from the left scenario. The pair-wise robots run around
the obstacles with the rigid formation shape and arrive at
the destination.

Fig. 10 shows that the control regulation switches inter-
nally between OTR and SDR depending on the dynamic
formation framework of the formation. The upper and be-
low figures are corresponding to the left and right scenar-
ios in Fig. 9, respectively. Firstly, OTR operates until the
time t =35s and decreases the big initial errors of offset
e(d). SDR is then the next control regulation. However,
the upper figure shows that OTR and SDR will operate
alternately while the formation shape changes to pass the
narrow passage (100s <t< 138s). Finally, the mobile robot
group adapts to the variation of the offset and spacing dis-
tance between robots and it achieves its task.

The simulation results indicate that the formation shape
can be maintained steadily and the convergence of forma-
tion error e(F ) shows the validity of the proposed formation
approach. Especially, our approach periodically considers
only short time intervals when computing the next steering
command to avoid the enormous complexity of the gen-
eral motion planning. In practical applications, the control
parameters can be selected adaptively.
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Fig. 9 Path of line formation maneuver

Fig. 10 Switching of control regulation

5 Conclusion

A formation control method based on dynamic forma-
tion framework is developed in this article. The main con-
tributions includes formation framework describing, for-
mation error analyzing, states updating and control laws
constructed in an instantaneous formation coordinate sys-
tem. Especially, the speed of the leader is constrained by
the curvature of its trajectory, and creating of the for-
mation coordinates is helpful to update the state of the
group and construct the formation control laws. Because
the formation error can be calculated from the offset and
spacing distance matrixes periodically, an adaptive regu-
lating and maintaining mechanism of the formation shape
is configurable. Deciding the optimal formation shape for
a given environment and implementing coordination tasks
with more robots are also important directions in our future
work.

References

1 Wang Yue-Chao, Tan Da-Long. State of the art and fu-
ture directions of cooperative robotics. Robot, 1998, 20(1):
69∼75 (in Chinese)

2 Desai J P, Ostrowski J P, Kumar V. Modeling and control
of formations of nonholonomic mobile robots. IEEE Trans-
actions on Robotics and Automation, 2001, 17(6): 905∼908

3 Das A K, Fierro R, Kumar V. A vision-based formation
control framework. IEEE Transactions on Robotics and Au-
tomation, 2002, 18(5): 813∼825

4 Lewis M A, Tan K H. High precision formation control of
mobile robots using virtual structures. Autonomous Robots,
1997, 4(1): 387∼403

5 Ren W, Beard R W. A decentralized scheme for spacecraft
formation flying via the virtual structure approach. In: Pro-
ceedings of the 2003 American Control Conference. Denver
Colorado, USA, IEEE, 2003. 1746∼1751

6 Balch T, Arkin R C. Behavior-based formation control for
multi-robot teams. IEEE Transactions on Robotics and Au-
tomation, 1998, 14(6): 926∼938

7 Jonathan R T L, Randal W B, Brett J Y. A decentral-
ized approach to formation maneuvers. IEEE Transactions
on Robotics and Automation, 2003, 19(6): 933∼941

8 Belta C, Kumar V. Trajectory design for formations of
robots by kinetic energy shaping. In: Proceedings of IEEE
International Conference on Robotics and Automation.
Washington, USA, IEEE, 2002. 2593∼2598

9 Fujibayashi K, Murata S, Sugawara K. Self-organizing for-
mation algorithm for active elements. In: Proceedings of
IEEE Symposium on Reliable Distributed Systems. Suita,
Japan, IEEE, 2002. 416∼421

10 Jose S, Rafael F. Sliding mode control for robot formations.
In: Proceedings of IEEE International Symposium on Intel-
ligent Control. Houston TX, USA, IEEE, 2003. 438∼443

11 Kavraki L E, Kolountzakis M N, Latombe J C. Analysis
of probabilistic roadmaps for path planning. IEEE Transac-
tions on Robotics and Automation, 1998, 14(1): 166∼171

12 Juidette H, Youlal H. Fuzzy dynamic path planning using ge-
netic algorithms. Electronics Letters, 2000, 36(4): 374∼376

13 Choek K C, Smid G E, Koayashi K. A fuzzy logic intelligent
control system architecture for an autonomous leader follow-
ing vehicle. In: Proceedings of the 1997 American Control
Conference. Albuquerque, USA: IEEE, 1997. 1: 522∼526

14 Kurozumi R, Fujisawa S, Yamamoto T, Suita Y. Path plan-
ning for mobile robots using an improved reinforcement
learning scheme. In: Proceedings of the 41st SICE Annual
Conference SICE 2002. IEEE, 2002. 4: 2178∼2183

CHEN Yu-Qing Ph.D. candidate in
Research Center of Information and Con-
trol at Dalian University of Technology. His
research interests include cooperation of
multirobot systems, mobile wireless sensor
networks, human machine interaction, and
intelligent control systems. Corresponding
author of this paper.
E-mail: cyqb@163.com

ZHUANG Yan Lecturer in the Depart-
ment of Automation at Dalian University
of Technology. He received his Ph.D. de-
gree in Control Theory and Control Engi-
neering from Dalian University of Technol-
ogy in 2004. His research interests include
robot localization, map building, and nav-
igation.
E-mail: zhuang@dlut.edu.cn

WANG Wei Professor and director of
Research Center of Information and Con-
trol at Dalian University of Technology. He
received his Ph.D. degree in control theory
and control engineering from Northeastern
University in 1988. He was a post-doctor
at Norwegian Science and Technology Uni-
versity (1990-1992). His research interests
include predictive control, robotics, and in-
telligent control.


