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Wavelet Inpainting Based on
ppp -Laplace Operator

ZHANG Hong-Ying1 PENG Qi-Cong2 WU Yang-Dong3

Abstract The problem of filling in missing or damaged
wavelet coefficients is considered in this paper. Chan, Shen, and
Zhou have proposed two total variation (TV) wavelet inpainting
models to solve this problem. The main benefit of TV model
is that it can keep the edges very well, but this method suffers
from the staircase effect. To overcome this defect, we analyze
the physical characteristics of TV model and p-Laplace opera-
tor in local coordinates, and explain that diffusion performance
of p-Laplace is superior to that of TV model in essence. Af-
terwards, an inpainting model based on p-Laplace operator for
damaged wavelet coefficients is presented. This new model can
effectively reduce the staircase effect in TV model whereas it can
still keep sharp edges as well as TV model. Experiment results
show that better inpaingting quality can be achieved with much
less computing time with our model.

Key words Image inpainting, wavelet transform, p -Laplace
operator, total variation model

1 Introduction
Image inpainting refers to filling in missing or damaged

regions in images. Mathematically speaking, inpainting is
essentially an interpolation problem, and it is widely used
in computer vision and image processing, including image
replacement[1], disocclusion[2,3], and error concealment[4].
After the release of the new image compression standard
JPEG2000, which is largely based on wavelet transforms,
including the famous Daubechies 7/9 biorthogonal wavelet
decomposition, many images are formatted and stored in
terms of wavelet coefficients. In the wireless communica-
tion of these images, it could happen that certain wavelet
packets are randomly lost or damaged during the trans-
mission process. To recover the original images from their
incomplete wavelet transforms is an inpainting problem ac-
cording to the universal definition proposed in [5]. But
this task remarkably differs from the classical inpainting
problems in that the inpainting regions are in the wavelet
domain.

Chan, Shen, and Zhou[6] proposed two variational mod-
els for wavelets based image inpainting depending on
whether or not noise needs to be suppressed in the image.
Their ideas are to use the given regularization in the pixel
domain to control and restore wavelet coefficients in the
wavelet domain. In their models, they use the total vari-
ation (TV) norm because it can retain sharp edges while
reducing noise and other oscillations. But the correspond-
ing Euler-Lagrange equation is not trivial to compute since
it is highly nonlinear and ill-posed in strong sense. Fur-
thermore, these models suffer from the staircase effect, i.e.,
smooth regions (ramp) are transformed into piecewise con-
stant regions (stairs). To overcome these deficiencies, we
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first analyze the physical characteristic of TV model and
p-Laplace operator in local coordinates and explain that
diffusion performance of p-Laplace is superior to that of
TV model in essence. Then we present a new inpainting
model based on p-Laplace operator for damaged wavelet
coefficients. The results of experiment show that, with our
method, better inpaingting quality can be achieved with
much less computing time.

2 Analysis of ppp -Laplace operator and TV
model

As shown in Fig. 1, Ω represents the whole image region,
Drepresents the inpainting region, u0

˛̨
Ω\D is the available

image information, u is the original image. The image in-
painting model based on TV proposed by Tony Chan[7] is
as follows

min J [u] =

Z

Ω

|∇u| dxdy +
λ

2

Z

Ω\D

(u− u0)
2 dxdy (1)

where λ is a constant. According to variational theory, the
Euler-Lagrange equation corresponding to (1) is

−div
`|∇u|−1∇u

´
+ λD (x, y) (u− u0) = 0 (2)

where div represents the divergence operator, λD (x, y) =

λ · 1Ω\D (x, y) =


λ (x, y) ∈ Ω\D
0 (x, y) ∈ D

. This model is rooted

in the total variational denoising model proposed by Rudin-
Osher-Fatemi[8]. In this model, diffusion performance is
dependent on div

`|∇u|−1∇u
´
. We define

∆u = div
`|∇u|−1∇u

´
(3)

as diffusion operator of TV model. In [9], one defines p-
Laplace operator as

∆pu = div
`|∇u|p−2∇u

´
, 1 < p < ∞ (4)

Fig. 1 Inpainting is to paint the missing u0 |D on an
inpainting domain D based on what is available Ω\D

From (3) and (4), we can see that TV diffusion opera-
tor is the limit of p-Laplace operator when p → 1. So, in
order to analyze the physical characteristics of TV model
and p-Laplace operator, we only deduce the expression of
p-Laplace operator in local coordinates. Choose a local or-
thogonal coordinates system(ξ, η), as shown in Fig. 2, such
that the η-axis is parallel to the gradient direction at a
point and the ξ-axis is perpendicular, i.e.,

ξ =
(−uy, ux)

|∇u| =
∇⊥u

|∇u| , η =
(ux, uy)

|∇u| =
∇u

|∇u| (5)
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Fig. 2 The relation between the whole coordinates and the
local coordinates

According to the second-order directional derivative
method in [10, 11], we deduce the representation of (4)
in the local orthogonal coordinates system (ξ, η). That is,
in the local coordinates (ξ, η), (4) can be represented as

∆pu= |∇u|p−2 uξξ + (p− 1) |∇u|p−2 uηη (6)

Expression (6) illustrates that diffusion equation
∂u/∂t = ∆pu is essentially nonlinear anisotropic diffu-
sion equation. The diffusion performance of diffusion equa-
tion is controlled by the diffusion coefficients |∇u|p−2 and

(p− 1) |∇u|p−2.
Now, we take into account two limit situations of (6) in

the following.
1) When p ≡ 1, ∆1u= |∇u|−1 uξξ, this is the expression

of (5) in local coordinates. From this expression, we can
see that TV diffusion operator only diffuses to the orthog-
onal direction of ∇u, with diffusion coefficient of |∇u|−1,
while no diffusion in the gradient direction. It is essentially
anisotropic diffusion. The main benefit of TV model is that
it does not penalize discontinuity in the image, thus keeping
the edges very well. But it suffers from the staircase effect,
i.e., smooth regions (ramp) are transformed into piecewise
constant regions (stairs).

2) When p ≡ 2, ∆2u= uξξ+uηη, this is isotropic diffusion
because of the same diffusion coefficients. It is essentially
the diffusion factor of harmonical model. This model can
smooth image, while blur sharp edges.

According to the above analysis, we assure that the
model with 1 < p < 2 can reduce the staircase effect
whereas it can still keep the sharp edges effectively. On
the other hand, because TV model diffuses only in one
direction while p-Laplace operator in two directions, it is
apparent that the latter is faster than the former in diffu-
sion speed. Consequently, better inpaingting quality can
be achieved with much less computing time when applying
p-Laplace operator to inpainting model. In the following
section, we will present a new wavelet image inpaing model
based on p-Laplace operator.

3 Wavelet inpainting model based on ppp -
Laplace operator

3.1 Wavelet inpainting model

In [9], one defines p-Laplace operator as ∆pv = ∇ ·`|∇v|p−2∇v
´
, and the corresponding p-Laplace function is

defined as
∇pu− f (x, u) = 0 1 < p < ∞, x ∈ Ω

u = 0 x ∈ ∂Ω
(7)

here Ω is a bounded domain in RRRNwith smooth boundary
∂Ω . To image restoration problem, f (x, u) = λ

`
u− u0

´
,

f : RRR × Ω → RRR, where λ is a constant. u0 = u + n is the
same as in the previous section. Then the energy functional
corresponding to (7) is defined as

J [u] =
1

p

Z

Ω

|∇u|p dx +
λ

2

Z

Ω

(u− u0)
2 dx (8)

If 1 < p < 2, we will get an image inpainting model based
on p-Laplace operator, and we define it as

J [u] =
1

p

Z

Ω

|∇u|p dx +
λ

2

Z

Ω\D

(u− u0)
2 dx 1 < p < 2

(9)
where p can be adaptively selected based on the local gra-
dient features of images. That is, away from edges, p will
be approached to 2 to overcome the staircase effect; on the
contrary, p will be approached to 1 to preserve edges. So
this new model can effectively reduce the staircase effect
in TV model whereas it can still retain the sharp edges as
TV model. Motivated by [6], we present a novel inpaint-
ing model based on the p-Laplace operator for damaged
wavelet coefficients. Our model is
8
>>>>>>>>>>><
>>>>>>>>>>>:

min
βj,k

F (u, u0) = 1
p

R
Ω
|∇xu (βββ, x)|pdx+

P
j,k

λj,k

2
(βj,k − αj,k)2 1 < p < 2

u (βββ, x) =
P
j,k

βj,kψj,k (x) , βββ = (βj,k) j, k ∈ Z

u0 (ααα, x) =
P
j,k

αj,kψj,k (x) j, k ∈ Z

λj,k =


0 (j, k) ∈ D
λ (j, k) ∈ Ω\D

(10)
where Ω is the image domain, and D is the inpainting index
region.

According to variational theory, the Euler-Lagrange
equation corresponding to (10) is

−∇ · `|∇xu (βββ, x)|p−2∇xu (βββ, x)
´

+ λj,k (βj,k − αj,k) = 0
(11)

The gradient decent flow of this model is

(βj,k)t = ∇·`|∇xu (βββ, x)|p−2∇xu (βββ, x)
´−λj,k (βj,k − αj,k)

(12)

3.2 Wavelet inpainting algorithm

To find the minimizer of (10), we just need to solve for
the solution of the above Euler-Lagrange equation (11). We
can also solve it using the method of gradient flow, which is
achieved by introducing an artificial time variable and solv-
ing the above equation (11) to the steady state for model
(10). The steady state refers to (βi,k)t = 0. In this case,
gradient flow (12) is reduced to the Euler-Lagrange equa-
tion (11). Many numerical schemes can solve the above
equation. In this paper, we also use the same numerical
algorithm as in [6], the explicit finite difference algorithm,
to find the minimizer. To simplify the formulation, we in-
troduce the standard finite difference notations, such as

The forward differences:

D+
1 uk,l = uk+1,l − uk,l, D+

2 uk,l = uk,l+1 − uk,l
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The backward differences:

D−
1 uk,l = uk,l − uk−1,l, D−

2 uk,l = uk,l − uk,l−1

The time step size is denoted by ∆t and space grid size
is ∆x.

We note that it is important to evaluate the nonlinear
term, which we denote as

Wcurv = ∇ · `|∇xû (βββ, x)|p−2∇xû (βββ, x)
´

(13)

in (12). This term is the p-Laplace operator projected on
the wavelet basis

Wcurv =

Z
∇ · `|∇u|p−2∇u

´
ψj,k(x)dx (14)

However, the p-Laplace operator is defined in the pixel do-
main. In this paper, we calculate it straightforwardly by
transforming the wavelet domain to the pixel domain to
compute the p-Laplace operator, and then transform back
to the wavelet domain. That is, we calculate

u = IWT (βββ) (15)

where IWT is the inverse wavelet transform. For all (i, j),
compute

curvi,j = D−
1

D+
1 ui,j

(
˛̨
D+

1 ui,j

˛̨2
+
˛̨
D+

2 ui,j

˛̨2
+ ε)

2−p
2

+

D−
2

D+
2 ui,j

(
˛̨
D+

2 ui,j

˛̨2
+
˛̨
D+

2 ui,j

˛̨2
+ ε)

2−p
2

(16)

where ε is a small positive number which is used to prevent

the numerical blow up when
˛̨
D+

1 ui,j

˛̨2
+
˛̨
D+

2 ui,j

˛̨2
= 0.

Then we compute the curvature projection on the wavelet
basis by

Wcurv = FWT (curv) (17)

where FWT is the forward wavelet transform.
The complete algorithm can be summarized by the fol-

lowing pseudo-code.
Algorithm.
1) Start with initial guess βnew

j,k = αj,kχj,k. Set βold
j,k = 0,

and the initial error E =
‚‚βββnew − βββold

‚‚
2
.

2) While i ≤ N or E ≤ δ, do

a) Set βββold = βββnew

b) Calculate Wcurv by (15)∼(17)
c) For all (i, j), update

βnew
j,k = βold

j,k +
∆t

∆x

“
βpTV

j,k − λj,k(βj,k − αj,k)
”

d) Compute error E =
‚‚βββnew − βββold

‚‚
2
, and set i = i+1

e) End the while loop.

4 Simulation and result analysis
In this section, we simulate our algorithm on Matlab7.0.

All experiments are run on a 1.8GHz AMD XP2200 with
512MB of RAM. To test the models, we use standard Peak
Signal to Noise Ratio (PSNR) to quantify the performance
of inpainting. As usual, the larger the PSNR value, the
better the performance. In all examples shown here, we
use db 7/9 biorthogonal wavelets with periodic extensions
at the boundaries and set p = 1.2, λ = 0 for noiseless
images, λ = 0.08 for noisy images.

In the first example, we apply the TV wavelet inpaint-
ing model and our wavelet inpainting model based on the

p-Laplace operator to a real image shown in Fig. 3(a). The
picture in Fig. 3(b) is the damaged image with 50% wavelet
coefficients randomly damaged. Fig. 3(c) is the restored
image with TV wavelet inpainting model after iterating
300 times (75.35s), which has PSNR=26.7320dB. Fig. 3(d)
is the restored image with our model after iterating 200
times (59.32s), which has PSNR=29.2443dB. For compar-
ison purpose, Fig. 4 shows the performance improvement
measured by PSNR vs the severity of the damage. The
x-axis represents the percentage of wavelet coefficients be-
ing damaged. The y-axis is the performance measured by
PSNR. For the horizontal axis, for example, 0.8 means that
80% of wavelet coefficients are damaged. From this picture,
we can see that our wavelet inpainting model based on the
p-Laplace operator can dramatically improve image quali-
ties better than TV wavelet inpainting model, especially in
the large number of damaged coefficients.

Fig. 3 Results of the real image by two different methods ((a)
Original image; (b) Damaged image with 50% wavelet
coefficients randomly damaged (PSNR=8.8233dB); (c)

Restored image by TV wavelet inpainting model (75.35s,
PSNR=26.7320dB); (d) Restored image by our model (59.32s,

PSNR=29.2443dB) )

Fig. 4 Performance comparisons of two different methods

In the next experiment, we apply the two models to a
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synthetic image. To further compare the models, in ad-
dition to losing 50% coefficients randomly, we introduce
Gaussian noise to the image as well. Fig. 5(b) shows the
noisy image with losing 50% coefficients randomly and the
restored images using the two models. From the pictures,
we can see that our proposed model gives the better re-
stored image than TV wavelet inpainting model.

Fig. 5 Results of the synthetic image by two different methods
((a) Original noisy image; (b) 50% of the wavelet coefficients

are randomly damaged (PSNR=10.9833dB); (c) Restored
image by TV wavelet inpainting model (73.13s, PSNR=
18.5072dB); (d) Restored image by our model (62.65s,

PSNR=18.9185dB) )

5 Conclusion
In this paper, we have presented a wavelet inpainting

model based on p-Laplace operator for restoring arbitrary
number of coefficients in arbitrary locations of wavelets co-
efficients for images with or without noise. Comparing our
model to Chan, Shen and Zhou′s TV wavelet inpainting
model, we achieve the better inpaingting quality with much
less computing time, especially with large number of dam-
aged wavelet coefficients.
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