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Robust Control System Design Using Proportional Plus

Partial Derivative State Feedback
DUAN Guang-Ren1 ZHANG Biao1, 2

Abstract Based on a general parametric eigenstructure assignment result proposed for descriptor linear systems via proportional
plus partial derivative state feedback and a result for generalized eigenvalue sensitivity problem of matrix pairs, parametric represen-
tation of the closed-loop eigenvalue sensitivities to the perturbed elements in the open-loop system matrices is obtained. An effective
algorithm for eigenvalue assignment with minimum sensitivity in descriptor linear systems via proportional plus partial derivative
state feedback is then proposed. The algorithm does not contain ‘going back’ procedures, and allows the closed-loop eigenvalues to
be conveniently optimized within desired regions. An example demonstrates its effectiveness and simplicity.

Key words Descriptor linear systems, eigenvalue assignment, eigenvalue sensitivities, proportional plus partial derivative state
feedback

1 Introduction

Eigenvalue assignment with minimum sensitivity in mul-
tivariable linear systems is an important problem in the
field of robust control, and has been intensively studied
in the last decades. However, most of the results are ob-
tained for the case of conventional linear systems[1∼10]. For
the case of descriptor linear systems, this problem has only
been investigated by a few researchers[11∼15] . Kautsky et

al.
[11] extended their earlier well-known techniques in [3]

for conventional linear systems to the case of descriptor
systems, and laid a special emphasis on the closed-loop reg-
ularity. Syrmos and Lewis[12] proposed a robustness theory
for the generalized spectrum of descriptor linear systems,
and presented a compact theory for the robust eigenvalue
assignment problem in descriptor linear systems using the
concept of chordal metric. Duan and Patton [13] studied
robust pole assignment in descriptor linear systems via pro-
portional plus partial derivative state feedback. Due to the
capacity of derivative feedback, their work concentrated on
the case that the closed-loop system possesses n (=the sys-
tem order) finite closed-loop eigenvalues. Recently, Duan

et al.
[14] investigated robust pole assignment in descriptor

linear systems via state feedback, and considered robust
pole assignment in descriptor linear systems via output
feedback[15]. These works are based on the eigenstructure
assignment results respectively proposed by Duan[16] and
Duan[17], and, like Duan and Patton[13], they realized ro-
bust pole assignment by minimizing the condition numbers
associated with the closed-loop eigenvalues.

Solutions to eigenvalue assignment with minimum sen-
sitivity can be classified into two categories: one is to
minimize the eigenvalue sensitivities to model parameter
variations in all the elements of the open-loop system
matrices[1∼4,9∼15] ; the other is to minimize the eigenvalue
sensitivities to model parameter variations in some, but not
all, of the elements of the open-loop system matrices[1,5∼8] .
Different from [13], this paper considers the problem of
minimizing the eigenvalue sensitivities to model param-
eter variations in part of the elements of the open-loop
system matrices using proportional plus partial derivative
state feedback. Based on a result for generalized eigenvalue
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sensitivity problem of matrix pairs proposed by Haley[18]

and a general parametric eigenstructure assignment result
for descriptor linear systems via proportional plus partial
derivative state feedback proposed by Duan and Patton[19],
parametric representation of the closed-loop eigenvalue sen-
sitivities to the perturbed elements in the open-loop system
matrices is established, and an effective algorithm for ro-
bust eigenvalue assignment in descriptor linear systems via
proportional plus partial derivative state feedback is then
proposed. Due to the advantages of the eigenstructure as-
signment approach used, the approach proposed for the ro-
bust pole assignment problem possesses several features: 1)
The procedures for solution of the proposed robust pole as-
signment problem are in a sequential order, and no “going
back” procedures are needed. 2) The eigenvalues may be
easily included in the design parameters and are optimized
within certain desired fields on the complex plane to im-
prove the robustness. 3) The optimality of the solution to
the whole robust pole assignment problem is solely depen-
dent on the optimality of the solution to the minimization
problem converted. A numerical example will demonstrate
the above advantages.

The paper is divided into five sections. In the next sec-
tion, the problem of eigenvalue assignment with minimum
sensitivity in descriptor linear systems via proportional plus
partial derivative state feedback is formulated. Section 3
states a result, proposed by Duan[19], on eigenstructure as-
signment in descriptor linear systems via proportional plus
partial derivative state feedback. The algorithm for solv-
ing the proposed robust eigenvalue assignment problem is
presented in Section 4. An example is examined in Section
5.

2 Problem formulation

Consider the following descriptor linear system

(E + ∆E)ẋxx = (A + ∆A)xxx + (B + ∆B)uuu (1)

where xxx ∈ RRRn and uuu ∈ RRRr are, respectively, the state vector
and the input vector; E, A and B are matrices of appropri-
ate dimensions with rank(E) = n0 ≤ n and rank(B) = r,
and they satisfy the following R-controllability assumption:

Assumption 1. rank[sE − A B] = n, for ∀ s ∈ CCC.
The matrices ∆E, ∆A and ∆B are the system parame-

ter perturbations which possess the following forms

∆E =

l
∑

i=1

Ei εi, ∆A =

l
∑

i=1

Ai εi, ∆B =

l
∑

i=1

Bi εi (2)
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where Ei, Ai and Bi, i = 1, 2, . . . , l, are known real ma-
trices of proper dimensions; εi, i = 1, 2, . . . , l, are small
perturbation variables.

When the following proportional plus partial derivative
state feedback controller

uuu = Kxxx − LCẋxx (3)

is applied to system (1), where C ∈ RRRm×n is the measure-
ment matrix with full row rank, and K ∈ RRRr×n, L ∈ RRRr×m

are respectively the proportional state feedback gain ma-
trix and the partial derivative state feedback gain matrix,
the closed-loop system is obtained in the following form

(Ec + ∆Ec)ẋxx = (Ac + ∆Ac)xxx (4)

with
Ec = E + BLC, Ac = A + BK (5)

∆Ec = ∆E + ∆BLC, ∆Ac = ∆A + ∆BK (6)

It has been shown in [19] that under the condition

rank[E B] = n or rank[ET CT] = n (7)

there exists a real matrix L such that Ec is non-singular.
Due to this fact, we aim to assign n finite closed-loop
relative eigenvalues, and leave no infinite eigenvalues to
the closed-loop system. Further, in view of the fact
that non-defective matrix pair [Ac Ec] possesses relative
eigenvalues with less sensitivities to the matrix parame-
ter perturbations[11], the closed-loop finite eigenvalues are
restricted to be a set of n distinct, but self-conjugate com-
plex numbers. The problem of robust pole assignment to
be solved in this paper can be stated as follows.

Problem RPA. Given system (1) and (2) satisfying
Assumption 1, and a set of regions Ωi, i = 1, 2, . . . , n,
on the complex plane, which are symmetric about the real
axis, find a proportional plus partial derivative state feed-
back controller in the form of (3), such that the following
requirements are met:

1) The matrix pair [Ac Ec] is regular, that is, det(sEc −
Ac) is not identically zero.

2) The matrix pair [Ac Ec] has n distinct finite rela-
tive eigenvalues si, i = 1, 2, . . . , n, satisfying si ∈ Ωi, i =
1, 2, . . . , n.

3) The eigenvalues of the matrix pair [Ac + ∆Ac Ec +
∆Ec] at εi = 0, i = 1, 2, . . . , l, are as insensitive as possible
to small variations in εi, i = 1, 2, . . . , l.

3 Preliminaries

It is shown in [20] that, when Assumption 1 is satis-
fied, there exist a pair of right coprime polynomial matrices
N(s) ∈ RRRn×r[s] and D(s) ∈ RRRr×r[s] satisfying

(A − sE)N(s) + BD(s) = 0 (8)

Lemma 1[19]. Given system (1) and (2) satisfying As-
sumption 1. Let N(s) ∈ RRRn×r[s] and D(s) ∈ RRRr×r[s] be
polynomial matrices satisfying (8). Then

1) There exist a group of distinct, self-conjugate com-
plex numbers si, i = 1, 2, · · · , n, a non-singular matrix
V ∈ CCCn×n, two real matrices K ∈ RRRr×n and L ∈ RRRr×m,
such that det[(s(E + BLC)− (A+ BK))] is not identically
zero, and

(A + BK)V = (E + BLC)V Λ (9)

holds for
Λ = diag(s1, s2, · · · , sn) (10)

if and only if
a) there exists a matrix L ∈ RRRr×m satisfying
Constraint 1. det(E + BLC) 6= 0;
b) there exists a group of parameter vectors fff i, i =

1, 2, . . . , n, satisfying
Constraint 2. fff i = f̄ff l if si = s̄l

and
Constraint 3. det[N(s1)fff1 N(s2)fff2 · · · N(sn)fffn] 6=

0.
2) When the above conditions a) and b) are satisfied, the

partial derivative feedback gain L may be taken to be an
arbitrary real matrix satisfying Constraint 1, the matrix V
are given by

V = [N(s1)fff1 N(s2)fff2 · · · N(sn)fffn] (11)

and the corresponding matrix gain K is given by

K = (W + LCV Λ)V −1 (12)

with
W = [D(s1)fff1 D(s2)fff2 · · · D(sn)fffn] (13)

where in (11) and (13), fff i, i = 1, 2, . . . , n, is a group of
design parameter vectors satisfying Constraints 2 and 3.

Lemma 2[19]. Let the conditions a) and b) in Lemma 1
hold, matrices K, L and V be given according to the second
conclusion of Lemma 1, and U be defined by

UT = V −1(E + BLC)−1 (14)

Then
UTEcV = I, UTAcV = Λ (15)

4 Solution to problem RPA

In order to solve the robust pole assignment problem for-
mulated in Section 2, proper sensitivity measures for the
closed-loop eigenvalues need to be established. To achieve
this purpose, we first state the following lemma.

Lemma 3[18]. Let M, N ∈ RRRn×n be matrix functions
of some scalar parameter ε, λ be a simple finite relative
eigenvalue of the non-defective matrix pair [M N ], and xxx
and yyy be a pair of right and left eigenvectors of the matrix
pair [M N ] associated with eigenvalue λ. Then

∂λ

∂ε
=

fffT

(

∂M

∂ε
− λ

∂N

∂ε

)

xxx

yyyTNxxx
(16)

Let vvvi and uuui be respectively the ith columns of matrices
V and U . With Lemma 1 and Lemma 2, we can prove the
following theorem.

Theorem 1. Let the conditions in Lemma 2 hold.
Then the eigenvalue sensitivities of the closed-loop system
(4)∼(6) to variations εi at εi = 0, i = 1, 2, . . . , l, are given
as follows

∂si

∂εj
= uuuT

i (AjN(si) + BjD(si) − siEjN(si))fff i (17)

i = 1, 2, . . . , n, j = 1, 2, . . . , l

where uuui is the ith column of the matrix U given in
Lemma 2.

Proof. In view of (2) and (6), we have

∆Ec =
l
∑

p=1

(Ep + BpLC)εp, ∆Ac =
l
∑

p=1

(Ap + BpK)εp

(18)
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It is clear that the eigenvalues and eigenvectors of per-
turbed matrix pairs [Ac + ∆Ac Ec + ∆Ec] are all func-
tions of perturbation parameters εi, i = 1, 2, . . . , l. Denote
ω = (ε1, ε2, · · · , εl). By applying Lemma 3 and using
(18), we have

∂si(ω)

∂εj
=

uuuT
i (ω)

(

∂∆Ac

∂εj
− si(ω)

∂∆Ec

∂εj

)

vvvi(ω)

uuuT
i (ω)(Ec + ∆Ec)vvvi(ω)

=
uuuT

i (ω) [Aj + BjK − si(ω)(Ej + BjLC)]vvvi(ω)

uuuT
i (ω)(Ec + ∆Ec)vvvi(ω)

(19)

i = 1, 2, . . . , n, j = 1, 2, . . . , l

Letting ω = 0 and noticing that uuui(000) = uuui, vvvi(000) =
vvvi, si(0) = si and ∆Ec|ω=0 = 0, we have

∂si

∂εj
=

uuuT
i [Aj + BjK − si(Ej + BjLC)]vvvi

uuuT
i Ecvvvi

(20)

i = 1, 2, . . . , n, j = 1, 2, . . . , l

From (12), we can obtain

Kvvvi = wwwi + siLCvvvi (21)

By using (21), (20) can be turned into the following form

∂si

∂εj
=

uuuT
i (Ajvvvi + Bjwwwi − siEjvvvi)

uuuT
i Ecvvvi

(22)

i = 1, 2, . . . , n, j = 1, 2, . . . , l

Finally by applying Lemma 1 and Lemma 2, we can convert
(22) into the form of (17). �

It follows from Lemma 1 that the matrices K and L
given according to the second conclusion of Lemma 1 meet
the first two requirements in Problem RPA. In order to
solve Problem RPA, we need to seek proper choices of
design parameters, L, si, fff i, i = 1, 2, . . . , n, to further
meet the third requirement in Problem RPA stated in Sec-
tion 2. This can be realized by minimizing the closed-loop
eigenvalue sensitivities given in (17). We may define an
objective as

J(L, si, fff i, i = 1, 2, . . . , n) =
n
∑

i=1

l
∑

j=1

αij

∣

∣

∣

∣

∂si

∂εj

∣

∣

∣

∣

2

(23)

where ∂si

∂εj
, i = 1, 2, . . . , n, j = 1, 2, . . . , l, are given by

Theorem 1, and αij , i = 1, 2, . . . , n, j = 1, 2, . . . , l, are a
group of positive scalars representing the weighting factors.
Therefore, the parameters L, si, fff i, i = 1, 2, . . . , n, can be
sought by the following optimization problem:

minimize J(L, si, fff i, i = 1, 2, . . . , n)
s.t. si ∈ Ωi, i = 1, 2, . . . , n
Constraints 1∼3

(24)

Based on the above deduction and analysis, an algorithm
for solution to Problem RPA can be given as follows.

Algorithm RPA.
1) Solve the right coprime matrix polynomials N(s) and

D(s) satisfying (8).
2) Solve the parametric expressions for matrices V, W

and U according to (11), (13) and (14).
3) Find the optimal design parameters L, fff i, si, i =

1, 2, . . . , n, by solving the minimization problem (24).

4) Calculate matrices V and W according to (11) and
(13) based on the parameters fff i, si, i = 1, 2, . . . , n, ob-
tained in Step 3.

5) Calculate the state feedback gain matrix K by for-
mula (12) based on matrices V and W obtained in Step 4
and the parameter matrix L obtained in Step 3.

5 Example

Consider a descriptor linear system with the following
coefficient matrices[13,19] :

E =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
1 0 0 0 0 0















A =















0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 1















B =

[

1 0 0 0 1 0
0 0 0 0 1 0

]

T

The measurement matrix of the state derivatives is given
by

C =

[

0 0 0 1 0 0
0 0 0 0 0 1

]

It is easy to verify that Assumption 1 and condition (7)

are satisfied. By a method given by Duan and Patton[19],
the following solution to the right coprime factorization (8)
is obtained:

N(s) =















s2 −s2

s −s
1 0
0 s
0 1

s2(s − 1) −s2(s − 1)















D(s) =

[

s3 − 1 −s3

−s3 + 1 s3 − 1

]

Restrict the closed-loop eigenvalues si, i = 1 ∼ 6, to be
distinct and real, and let

fff i =

[

ei

di

]

, i = 1 ∼ 6

Then the general parametric solutions for the closed-loop
eigenvectors are given by

vvvi =















(ei − di)s
2
i

(ei − di)si

ei

sidi

di

(ei − di)(si − 1)s2
i















, i = 1 ∼ 6

and the general forms for the corresponding vectors wwwi
′s

are given by

wwwi =

[

−ei + (ei − di)s
3
i

(ei − di)(1 − s3
i )

]

, i = 1 ∼ 6

Since all the closed-loop eigenvalues are real, we can also
restrict the parameters ei

′s and di
′s to be real. Therefore,

Constraint 2 holds automatically.
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Duan and Patton[13] have obtained a solution without
consideration of robustness by a pole assignment approach,
which is referred as Solution 1 in the following, while Duan
and Patton[13] have also obtained three robust solutions by
minimizing the closed-loop eigenvalue sensitivity measures
ci = ‖uuui‖2‖vvvi‖2/(1+|si|

2)1/2, i = 1 ∼ 6, which are referred
as Solutions 2∼4 in the following. Solutions 1∼3 were all
obtained on the condition that the closed-loop eigenvalues
are previously assigned to si = −i, i = 1 ∼ 6, while Solu-
tion 4 was obtained by optimizing closed-loop eigenvalues
within the following regions:

Ω1 = [−1 − 0.5], Ω2 = [−2.5 − 1], Ω3 = [−2.5 − 1]

Ω4 = [−4 − 2], Ω5 = [−5.5 − 3], Ω6 = [−6.5 − 4]

Corresponding to perturbations in the form of (2) with

E1 =















0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















A2 =















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















A3 =















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0















B1 =















0 1
0 0
0 0
0 0
0 0
0 0















, B4 =















0 0
0 0
0 0
0 0
1 0
0 0















and

E2 = E3 = E4 = A1 = A4 = 0, B2 = B3 = 0

we have worked out the following two solutions to the prob-
lem by using our algorithm. For the optimization problem
involved in obtaining the solutions, the Matlab command
fmincon is used.

Solution 5. As in Solutions 1∼3, the closed-loop eigen-
values are chosen as si = −i, i = 1 ∼ 6. The parameters
ei, di and L are found through solving minimization prob-
lem (24). Taking αi = 1, i = 1 ∼ 6, we obtain the parame-
ters ei and di as (see ∗ in the following) and the derivative
feedback gain as

L =

[

0.8091586 −0.0272887
3.6727977 −1.0475362

]

The corresponding proportional feedback gain is then given
by (see † in the following)

Solution 6. In this solution, all the three parts of pa-
rameters are optimized in the minimization problem (24),
where the closed-loop eigenvalue regions are chosen as in
Solution 4. Taking the same weighting factors as in Solu-
tion 5, we obtain the parameters si, ei and di as (see ‡ in
the following) and

L =

[

0.0684943 0.0693610
−0.5730766 2.5431677

]

The corresponding proportional feedback gain is then given
by (see § in the following)

Table 1 gives for each solution the robustness index value
J and the spectral norm of the condition number vector
ccc = [c1 c2 c3 c4 c5 c6], where ci = ‖uuui‖2‖vvvi‖2/(1 +

|si|
2)1/2, i = 1 ∼ 6. The magnitude of each of the deriva-

tive feedback gain L and the proportional feedback gain K
are also shown in Table 1. The practical closed-loop eigen-
values s′i, i = 1 ∼ 6, corresponding to these solutions are
listed in Table 2 (see next page). The number σ in Table 2
is defined by

σ =

(

6
∑

i=1

(

si − s′i
)2

)1/2

which represents the amount of drift of the closed-loop
eigenvalues from the nominal ones. Table 3 shows the
shifted closed-loop eigenvalues of the system under the per-
turbations with ε1 = ε2 = 0.003, ε3 = ε4 = 0.001, corre-
sponding to Solutions 1∼6.

Table 1 Robustness measures and magnitudes of solutions

Solutions J ‖ccc‖2 ‖L‖2 ‖K‖2

1 5669694.9165 140.1221 1 173.3643

2 79836.2167 63.8404 0.3541 7.7286

3 51627.2658 60.9959 0.3472 7.0797

4 3651.1695 15.4776 0.2562 3.7894

5 3839.4225 94.5313 3.9111 76.4945

6 72.8407 46.3356 2.6350 93.0874

From Table 1 and Table 2, we can see that the solutions
with smaller J values have reasonable ‖ccc‖2 values and rea-
sonable magnitudes, and the closed-loop eigenvalue drifts
caused by the truncation errors in L and K for these solu-
tions are also small. It can be seen from Table 3 that the
robust solutions obtained by our algorithm, Solutions 5 and
6, have much smaller eigenvalue sensitivities than the non-
robust one, Solution 1, and the robust solutions obtained
by Duan and Patton[13], Solutions 2∼4. It can also be seen
from Table 3 that inclusion of the closed-loop eigenvalues
into the design parameters further improves the robustness
of the closed-loop system.

ei : 0.2978396 −0.1423776 0.0003916 −0.0003332 0.0330662 −0.1693062
di : 0.0279394 −0.0795842 0.0000937 −0.0000001 0.0290889 −0.1509819

(∗)

K =

[

−7.2206467 −18.2085216 −12.0241388 −5.8477275 0.7399704 0.2376506
35.4650184 30.9446253 15.1511768 −24.3985087 −50.7632703 9.1128192

]

(†)

si : −0.5 −1.6914318 −1 −2 −3 −6.5
ei : −227.6965931 4.1203370 −57.4780905 471.1710735 90.1500257 −170.6558778
di : −27.1273861 −429.2019823 −44.0334960 223.3387595 88.8614392 −168.3274224

(‡)

K =

[

−5.5302626 −5.8147489 −2.7952875 −0.3027807 1.4561108 −0.4965289
−74.3391045 −46.5318848 −12.1152356 2.2872871 13.5679474 −23.9326232

]

(§)
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Table 2 Closed-loop eigenvalues

Solutions s′

1
s′

2
s′

3
s′

4
s′

5
s′

6
σ

1 −1.0000000 −2.0000000 −3.0000000 −3.9999999 −5.0000006 −5.9999996 7.21e − 7
2 −0.9999999 −2.0000005 −3.0000000 −3.9999989 −4.9999998 −6.0000008 1.499e − 6
3 −0.9999999 −2.0000009 −3.0000000 −3.9999966 −4.9999991 −6.0000040 5.457e − 6
4 −0.5000000 −1.0371611 −1.0632987 −3.2672928 −5.4999998 −6.5000005 5.910e − 7
5 −1.0000000 −1.9999999 −2.9999976 −4.0000053 −5.0000108 −5.9999829 2.105e − 5
6 −0.5000000 −1.6914333 −1.0000001 −1.9999989 −2.9999985 −6.4999981 3.045e − 6

Table 3 Shifted closed-loop eigenvalues under system perturbations

Solutions s1 s2 s3 s4 s5 s6

1 −1.0209925 −1.7313214 −3.4718225 ± 0.1020908j −5.3416751 ± 2.1466420j

2 −1.0153142 −1.9413655 −2.7143581 −4.6580784 ± 0.7373094j −6.2394378
3 −1.0128808 −1.8106250 −3.2311768 −4.3095201 ± 0.7873383j −6.4972430
4 −0.5061036 −1.0308570 ± 0.0359107j −3.3310303 −5.4024279 −6.8031855
5 −1.0020148 −1.9518119 −3.0038096 −4.1614917 −4.8849955 −6.1431884
6 −0.4984105 −1.5927183 −1.0007744 −2.1769518 −2.9169237 −6.5239623
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