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Model Transformation and Optimization of
the Olympics Scheduling Problem
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Abstract The Olympics scheduling problem is modeled as constraint satisfaction problem, which is transformed into a constrained
optimization problem by softening the time constraints of the final matches. A decomposition methodology based on Lagrangian
relaxation is presented for the constrained optimization problem. For the dual problem optimization the sub-gradient projection
method with variable diameter is studied. The method can converge to the globally optimal solutions and the efficiency is given.
Numerical results show that the methods are efficient and the phase transition domain can be recognized by the algorithm
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1 Introduction

Since 1980s, modern sports activities have been more
and more socialized, specialized, entertainized, commercial-
ized and informatized. As time flies, new technologies play
more and more important roles in sports organization. And
“High-tech Olympics” has been one of the three themes
of “New Beijing, Great Olympics”. Research progress on
“High-tech Olympics” will benefit the society and economy
development.

Olympics organization involves quite many sorts of re-
sources, athletes, referees and gymnasia, as long with var-
ious constraints. So the Olympics scheduling is an ar-
duous task, which is one of the important branches of
the “High-tech Olympics” research. Sports scheduling re-
search originated in the 1980s. Nemhauser and Trick[1],
Henz et al.[2], Schaerf[3], Regin[4], McAloon, Tretkoff and
Wetzel[5], Schönberger, Mattfeld and Kopfer[6] have ex-
plored the scheduling problem. But they focused on the
single-event tournament scheduling problem. Research on
multi-event and large scaled scheduling research has not
been reported. Andreu[7] has studied the DSS for schedul-
ing the 1992 Olympic Games, but the algorithm was not
studied.

The Olympics scheduling problem is a timetabling prob-
lem. The timetabling problem is a combination problem
in nature, and has been proven NP-hard. A wide vari-
ety of approaches to timetabling problems have been de-
scribed in the literature and tested on real data. They can
be roughly divided into four types[8]: 1) sequential meth-
ods, 2) cluster methods, 3) constraint-based methods, and
4) meta-heuristic methods. Sequential methods and clus-
ter methods present policies that obtain approximate solu-
tions. Constraint-based methods are back-tracking meth-
ods in nature. Meta-heuristic methods can provide good
solutions, but they are computational consuming.

A novel method might be found by transforming the
problem into a new model. In this paper, the time con-
straints of the final matches are softened, and then the
Olympics scheduling problem is transformed into a con-
strained optimization problem. Although the events are
coupled by the field constraints, the constrained optimiza-
tion problem can be decomposed into single-event sub-
problems by relaxing the field constraints. Lagrangian re-
laxation provides a methodology to realize the decomposi-
tion. Since 1990s, the authors such as Luh, et al. have stud-
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ied the production scheduling problem with Lagrangian
relaxation[9∼14]. They relaxed the capacity constraints to
decompose the production scheduling problem into job sub-
problems. The difficulty of Lagrangian relaxation is the
optimization of the dual problem. In 1969, Polyak[15] pre-
sented a subgradient method to the convex problem, but
the convergence of the method depended on the estimated
optimal value. In 1996, Kiwiel[16,17] studied the subgra-
dient projection methods for convex optimization, which
converged without the estimated optimal value, but the di-
ameter of the variable domain was imported. Kim[18] had
presented a variable target value subgradient method in
1991 before Kiwiel, which was nothing but a special case
of Kiwiel′s method.

2 Temporal interval model language

The Olympics system involves time-distribution con-
straints, field constraints, person constraints and time win-
dow constraints. A temporal interval model language is
needed as the interface to deal with the constraints.

The matches are scheduled in the periods of the compe-
tition days, and the periods are not continuous. So a triple
(d, p, τ) is designed for time t, d = 1, · · · , n denotes the
days, p = 0, 1, · · · , pm − 1 denotes the periods (pm is the
number of the periods in a day), and τ = [0, 1, · · · , τm − 1]
denotes the time point (τm is the number of the time
points in a period). In the Olympics scheduling problem,
the kth match of event i′s jth round is denoted as (i, j, k),
and the final match is denoted as (i, jmi, 1). The beginning
time and ending time of (i, j, k) is denoted as Tbijk and
Teijk, the corresponding triples are (dbijk, pbijk, τbijk) and
(deijk, peijk, τeijk). The relations for time intervals are as
follows.

1) equal [t11, t12] = [t21, t22] ⇔ t11 = t21 ∧ t12 = t22.
2) before [t11, t12] < [t21, t22] ⇔ t12 < t21.
3) after [t11, t12] > [t21, t22] ⇔ t11 > t22.

4) repulsive [t11, t12]
c1↔
c2

[t21, t22] ⇔ t12 + c1 < t21 ∨ t11 >

t22 + c2.

5) close [t11, t12]
c1≈
c2

[t21, t22] ⇔ t11 ≤ t22 + c2 ∧ t12 + c1 ≥
t21.

6) including [t11, t12] ⊃ [t21, t22] ⇔ t11 ≤ t21 ∧ t12 ≥ t22.
7) during [t11, t12] ⊂ [t21, t22] ⇔ t11 ≥ t21 ∧ t12 ≤ t22.

The rules above are used to model the Olympics schedul-
ing problem of a schedule system.
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3 Modeling and model transforming of
the Olympics scheduling problem

In Olympics, the athletes hope to play fairly, the audi-
ence want their favorable matches, the sponsors require the
gainful advertisement time, and the matches run in some
special orders.

For most events, teams or athletes take part in some
matches, and the winners are promoted to the next round
until the champion is chosen. There are one or more
matches in a round, and the matches of the preceding round
have to be earlier than those of the successor. These are
called order constraints. Some special event has just one
round. For some traditional or other reasons, a special
round of event A must run before the related round and
after the preceding round of event B, for example, swim-
ming man and swimming woman. These are called cross
constraints. Some event cannot be much earlier or later
than some other event. These are called close constraints.
Some event has to be some time earlier or later than some
other event. For example, the different groups of the same
event had better run one after another, the track events
longer than 1000 meters cannot run in a same day. These
are called decentralization constraints. All of the above
constraints are called time-distribution constraints.

The capacity of the fields is limited, so there cannot be
much more matches on the fields at the same time. Some
fields may affect each other, and there cannot be matches
on the correlative fields at the same time. And these are
called field constraints.

In Olympics, some athlete may attend more than one
event. So there has to be some time interval between the
correlative events, and the athlete cannot run from one field
to another in a period of time. These are called person
constraints.

The audience and sponsors′ requirement could be ex-
pressed by time window constraints.

In fact, the events of the Olympics are coupled by the
field constraints. The field uncoupled events could be
schedule respectively and independently. Next, a kind of
field coupled events represented with the temporal interval
model language are analyzed and formulated in Section 2.

First, some symbols are explained. If event i can run
on the kind of field l, S(i, l) = 1, otherwise, S(i, l) =
0. If match (i, j, k) runs on the mth field at time t,
O[(i, j, k), m, t] = 1, otherwise, O[(i, j, k), m, t] = 0.

The constraints are formulated as follows:
1) Time-distribution constraints
Order constraints are as follows

[Tbi1j1k1 , Tei1j1k1 ] < [Tbi2j2k2 , Tei2j2k2 ] (1)

Cross constraints are as follows

[Tbi1jk1 , Tei1jk1 ] < [Tbi2jk2 , Tei2jk2 ] ∧ [Tbi2jk2 , Tei2jk2 ] <

[Tbi1j+1k1 , Tei1j+1k1 ] (2)

Decentralization constraints are as follows

[Tbi1j1k1 , Tei1j1k1 ]
c1↔
c2

[Tbi2j2k2 , Tei2j2k2 ] (3)

Close constraints are as follows

[Tbi1j1k1 , Tei1j1k1 ]
c1≈
c2

[Tbi2j2k2 , Tei2j2k2 ] (4)

2) Field constraints

∀l, t,
X

i:S(i,l)=1

O[(i, j, k), m, t] ≤ mmax (5)

There cannot be more than mmax matches on the mth
field at the same time.

3) Person constraints

[Tbi1j1k1 , Tei1j1k1 ]
c1↔
c2

[Tbi2j2k2 , Tei2j2k2 ] (6)

Matches (i1, j1, k1) and (i2, j2, k2) involve some common
athletes, so match (i1, j1, k1) must be repulsive to match
(i2, j2, k2).

O[(i, j, k1), m1, t1] = 1 ∧O[(i, j, k2), m2, t2]

= 1 ∧ |t1 − t2| ≤ τ ⇒ m1 = m2 (7)

Matches (i1, j1, k1) and (i2, j2, k2) involve some common
athletes. If they are time-close, they must occupy the same
field.

4) Time window constraints

[Tbij1k, Teij1k] ⊂ [t1, +∞] (8)

[Tbijm1, Teijm1] ⊂ [0, t2] (9)

The first round of event i cannot begin earlier than a
certain time t1, and the final match of event i cannot end
later than a certain time t2.

The constraints in the above describe the Olympics
scheduling problem. The target is to gain a solution that
satisfies all the constraints. This is a constraint satisfac-
tion problem in fact. As mentioned before, constraint-
based methods are back-tracking methods in nature. The
efficiency of the constraint-based methods depends on the
problem′s structure and the back-tracking policy. As the
feasible domain gets smaller, the satisfiability would drop
abruptly from a certain point, and to find a feasible solu-
tion or decide no solution is very difficult near the point[19].
This phenomenon is called phase transition. So we consider
model transforming. The feasible domain can be broadened
by softening constraints (9), and then we may try some
novel methods.

Let J =
X

i

wiT
2
i (10)

In (10)

Ti =


Teijm1 − Tei Teijm1 > Tei

0 else (11)

The constraint satisfaction problem can be transformed
into a constrained optimization problem as follows:

min
s.t.

J

(1)∼(8) are satisfied.
Constraint (5) can be rewritten as ggg(xxx) ≤ 000.

4 Solution methodology

4.1 Lagrangian relaxation

Consider the constrained optimization problem. Con-
straints (1), (2), (3), (4), (6) and (8) are all local con-
straints, they involve some kind of field. Constraint (7)
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does not affect the solution. And constraint (5) is the only
global constraint. We relax constraint (5) as follows

L(xxx,λλλ) = J + λλλτ (
X

OOO[(i, j, k), m, t]−mmmmax) (12)

xxx is the vector consisting of Tbijk and Teijk, λλλ is the
vector of Lagrangian multipliers and λλλ ≥ 0.

The dual problem is

q(λλλ) = min L(xxx,λλλ) (13)

s.t. Constraints (1), (2), (3), (4), (6) and (8) are satisfied.
(12) can be rewritten as follows

L(xxx,λλλ) =
X

i

Li − λλλmmmmax (14)

Li = wiT
2
i + λλλ(

X
O[(i, j, k), m, t]) (15)

In view of the separability of the original problem, the
relaxed problem can be decomposed into I sub-problems as
(15).

Due to the duality theorem, q(λλλ∗) = J∗. If the optimal
Lagrangian multipliers are known, the original problem can
be solved by optimizing the separable sub-problems. And if
the approximate optimal Lagrangian multipliers are known,
the original problem can be approximately solved. We have
a Lagrangian relaxation framework as shown in Fig. 1 to
solve the constrained optimization problem.

Fig. 1 The Lagrangian relaxation framework

4.2 Lagrangian multipliers updating

The Lagrangian multipliers are the solution of the dual
problem, which is proved to be a concave problem. The
existing method to solve the dual problem are dependent
on variable priori knowledge[15∼18]. The subgradient pro-
jection method with variable diameter for the dual prolem
optimization, which does not dependent upon any priori
knownledge, is presented in [20, 21] and modified in the
following.

It can be concluded that ggg(xxx) is the subgradient of q(λλλ)
by considering that q(λλλ) is concave, and for any ∆λλλ, q(λλλ +

∆λλλ) ≤ q(λλλ) +
˙
g(xxxλλλ), ∆λλλ

¸
.

Let L(q, qlev
k ) = {λλλ|q(λλλ) ≥ qlev

k }; then M∗ = L(q, q∗) is
the set of the optimal solutions. Since q(λλλ) is difficult to
be expressed directly, we rewrite M∗ by the subgradient.

M∗ =
S

λλλ′∈D L(q(λλλ;λλλ′), q∗), q(λλλ;λλλ′) = q(λλλ) +˙
g(xxxλλλ),λλλ− λλλ′

¸
, D is the domain of λλλ.

Similarly, the set of the solutions constrained by qlev
k can

be rewritten as follows.

L(q, qlev
k ) =

[
λλλ′∈D

L(q(λλλ;λλλ′), qlev
k )

Then let qk(λλλ) = q(λλλ;λλλk), Hk = {λλλ|qk(λλλ) ≥ qlev
k }, yyyk =

PHk (λλλk). PHk (λλλk) denotes the projection of λλλk on Hk.
P+(•) is the operator to project on positive semi-space.
dS(•) denotes the distance to space S. With the closed
convex set Hk and an admissible stepsize t, the relaxation
operator is RHk,t(λλλ) = λλλ + t(PHk (λλλ) − λλλ) which has the
fejér constraction property

˛̨
yyy−RHk,t(λλλ)

˛̨2 ≤ |yyy−λλλ|2− tmin(2− tmax)d
2
Hk (λλλ), ∀yyy ∈ Hk.

Recall that Hk = {λλλ|qk(λλλ) ≥ qlev
k }, RHk,t(λλλ) = λλλ +

t(qlev
k − q(λλλk))ggg(xxxk)

‹|ggg(xxxk)|2.
The method is shown as follows.
Algorithm 1. The subgradient projection method with

variable diameter
Step 0. Let k = 0, λλλ0 ≥ 0, ε, δ0, d > 0, ρ0 = 0,

0 < ω < 1, kd > 1;
Let xxx0 be the solution of q(λλλ0) = L(xxx0,λλλ0), and xxxg

0 be
the corresponding feasible solution

J0 = J(xxxg
0), q0 = q(λλλ0), qlev

0 = ωJ0 + (1− ω)q0, qup
0 = J0,

xxx = xxxg
0;

Step 1. If Jk − qk ≤ ε, x is the final solution, and the
algorithm ends; Otherwise, continue;

For 0 < tmin ≤ tk ≤ tmax < 1 − δ, δ is a small positive
real number

λλλk+1 = P+(λλλk + tk(qlev
k − q(λλλk))ggg(xxxk)

.
|ggg(xxxk)|2);

ρk+1 = ρk+tk(2−tk)d2
Hk(λλλk)+d2

RN+(λλλk+tk(PHk(λλλk)−λλλk));

If q(λλλk+1) ≥ qk, then qk+1 = q(λλλk+1); otherwise, qk+1 =
qk;

k = k + 1;

Step 2. Let xxxk be the solution of q(λλλk) = L(xxxk,λλλk), xxxg
k

be the corresponding feasible solution;
If J(xxxg

k) ≤ Jk−1, then Jk = J(xxxg
k), xxx = xxxg

k; Otherwise,
Jk = Jk−1;

Step 3.1. If ρk > d, then qup
k = min{qlev

k−1, Jk}, ρk = 0;
Step 3.2. If ρk ≤ d, then qup

k = qup
k−1;

Step 4. 0 ≤ δk ≤ δk−1, if qk > qlev
k − δk, then qup

k = Jk,
d = kd, ρk = 0;

Step 5. qlev
k = ωqup

k + (1− ω)qk; go to Step 1;
To demonstrate the convergence of the method, we have

3 lemmas and 1 theorem, where Lf = sup
xxx∈S

|ggg(xxx)|, S is the

domain of the primal problem′s variables.
Lemma 1. If d < |λλλk − λλλ∗|2, then there exists some k

such that qlev
k ≤ qk + δk where δk is not smaller than a

certain constant.
Lemma 2. If d ≥ |λλλk − λλλ∗|2, δ is large enough and

δk = 0 for any k, then qup
k ≥ q∗.

Lemma 3. If d ≥ |λλλk − λλλ∗|2 and δk = 0 for any k, then
for any ε > 0,

k > d(Lf )2
‹
(tmin(2− tmax)ω

2(1− ω)2ε2)−
((f(xxx0)− q(λλλ0))

2‹ε)2‹(2e ln(ω)) ⇒ qup
k − qk < ε.
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Theorem 1. If there exists some k∗, such that d ≥
|λλλk − λλλ∗|2 and δk = 0 for k ≥ k∗, then Algorithm 1 con-
verges, and the convergence efficiency is

k − k∗ > d(Lf )2
‹
(tmin(2− tmax)ω

2(1− ω)2ε2)−
((f(xxx0)− q(λλλ0))

2‹ε)2‹(2e ln(ω)) ⇒ qup
k − qk < ε.

The proof of the lemmas and theorem is similar to those
in [20, 21]. When some k∗ is obtained such that δk = 0
for k ≥ k∗, Algorithm 1 converges to the global optimal
solution by the efficiency given in Theorem 1. The efficiency
of the whole algorithm also depends on the efficiency to get
k∗, which is determined by the original d and sequence δk.
If δk is large before d ≥ |λλλk − λλλ∗|2 is obtained and descends

to 0 sharply after d ≥ |λλλk − λλλ∗|2 is obtained, then d will

get larger rapidly to exceed |λλλk − λλλ∗|2. It is better if the

original d is more close to |λλλk − λλλ∗|2.
Though Algorithm 1 converges without any prior knowl-

edge, it is correspondingly complicated to obtain qlev
k . If

the original problem is feasible, it can be concluded that
q(λλλ∗) = J∗ = 0, the algorithm could be reduced by fixing
qlev

k = 0.

4.3 Sub-problems

Each of the sub-problems involves only one event, so it
is correspondingly simple. We solve the sub-problems with
enumeration method.

4.4 Construct feasible solutions

Since the field constraints are relaxed, the solutions ob-
tained in the iteration process would violate the field con-
straints, based on which we must construct feasible solu-
tions. In our work, a heuristic method is developed. The
method enumerates all the matches in the order of begin-
ning time, and postpones the current beginning time where
the field constraints are violated.

5 Numerical results

The algorithm has been implemented using Matlab and
tested on Celeron 4, CPU 1.4 GHz, 256 M SDRAM. The
Olympics lasts for 16 days around, but any group of events
which are field-coupled one another do not last longer than
the track and field, which last for about 10 days. For the
tested problem, we deal with the events during 7 days, and
each day is partitioned into 3 periods, each period is par-
titioned into 9 time intervals. Each match lasts for 1∼5
intervals, and all matches spread uniformly on the time
axis. All the numbers of intervals and beginning times are
generated randomly. The problem involves 20∼90 events,
and for a fixed number of events, the problem is generated
and computed 25 times.

In the numerical results by Algorithm 1, Jmax is the
maximal J that arises in the optimization process, which
denotes the maximal cost of violating the final time con-
straints. And |q|max is the absolute value of the minimal
q, which is the minimal dual value. The difference between
J and q is the gap of the original scheduling problem and
the dual problem, which is the measurement of the compu-
tational error.

If Jmin/Jmax is smaller than a certain value, it can be
decided that an acceptable solution is obtained, which vi-
olates the final time constraints not badly. If some q >0 is
got, it can be decided that the original scheduling problem
is unsatisfiable, i.e. there are no solutions which satisfy all
the constraints. And as a practical criterion, we can set
a positive value q to judge that a scheduling problem is

unsatisfiable if q >q .
By the results, the ratio of the total time consumed and

the number of events is nearly a constant under the fixed
steps of iteration. Jmin/Jmax, |q|min/|q|max, the time to
get Jmin and the number of tests to get q >0 increase as
the number of events increases. All the possible solutions
of the problems can be obtained in no more than 10 mins.
The phase transition can be recognized by the number of
tests to get q >0 and the time first to get q >0.

The phase transition is shown in Fig.2, where the x-
coordinate is the number of events, the y-coordinate is the
number of tests not to get q >0 and the average time first
to get q >0. From 40 to 70 on the x-coordinate, the number
of tests not to get q >0 decreases fast, and the average time
first to get q >0 is distinctly longer than that outside the
region.

Consider the numerical results by the reduced algorithm.
The average Jmin/Jmax

′s of the variable event number
are shown in Fig. 3. And the average time to get Jmin

by Algorithm 1 and the reduced algorithm are shown in
Fig. 4. Fig. 3 shows that when the number of events is larger
than 50, the average Jmin/Jmax increases fast. Comparing
to the results by Algorithm 1, phase transition happens
around 50 events. So it can be concluded that an original
problem is infeasible if Jmin/Jmax is larger than a certain
value. Fig. 4 shows that when the event number is smaller
than 40, the difference between the average times to get
Jmin by Algorithm 1 and the reduced algorithm are not
notable, when the event number is larger than 40, the time
by Algorithm 1 is remarkably larger than that by the re-
duced algorithm, and the difference has a maximal value
between 60 and 70. Figs 3 and 4 cannot provide enough
information to recognize the phase transition.

Fig. 2 Phase transition

Fig. 3 Average Jmin/Jmax
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Fig. 4 Average time to get Jmin

All the above numerical results show that Algorithm
1 and the reduced algorithm can both be applied to the
Olympics scheduling problem. Algorithm 1 is more suit-
able for recognizing the phase transition while the reduced
algorithm is less time consuming.

6 Conclusion

In this paper, the Olympics scheduling problem is mod-
eled as a constraint satisfaction problem. By softening the
time constraints of the final matches, the constraint sat-
isfaction problem is transformed into a constrained opti-
mization problem. A decomposition methodology based on
Lagrangian relaxation is presented for the constrained op-
timization problem. The dual problem optimization is the
key challenge, for which the subgradient projection method
with variable diameter is studied. The method can con-
verge to the globally optimal solutions, and the efficiency
is given. Numerical results show that the methods are ef-
ficient, and the phase transition domain can be recognized
by Algorithm 1.
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