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Variable Structure Model Reference Adaptive Control

with Unknown High Frequency Gain Sign
DONG Wen-Han1 SUN Xiu-Xia1 LIN Yan2

Abstract A variable structure model reference adaptive control for plants with relative degree greater than one and unknown high
frequency gain sign is proposed. A switching scheme is introduced based on a monitoring function designed for the first auxiliary
error of the close loop system. It is shown that under the supervision of the monitoring function, the switching stops after at most
a finite number of switchings and the tracking error converges to a residual set that can be made arbitrarily small by appropriately
choosing some design parameters.
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1 Introduction

Backstepping adaptive control (BAC)[1,2] has drawn
much attention during the past decade due to its better
transient performance than that of the traditional param-
eter adaptive control schemes[3]. The problem encountered
in the BAC to some real systems is that its control law
is highly nonlinear and complicated, especially, when the
plant relative degree is high. Furthermore, its tracking per-
formance would be deteriorated if input disturbance and
unmodelled dynamics exist[4]. On the other hand, some
robust model following schemes were also presented dur-
ing the 1990s, within which variable structure model ref-
erence adaptive control (VS-MRAC) was proposed to cope
with plant uncertainty and input disturbance with strong
stability, disturbance rejection and performance robustness
properties[5∼7]. However, as with the case of most model
following schemes, one of the basic assumptions of the VS-
MRAC is that the high frequency gain (HFG) sign is known
a priori. In [8], a switching method was proposed for the
VS-MRAC for plants with relative degree one (n∗ = 1) and
without a prior knowledge of HFG sign. This scheme was
generalized to the case of n∗ > 1 in [9] but with an adap-
tive law to estimate the HFG sign, which made the control
law design and the stability analysis much complicated. In
this paper, we first show that one only needs to design a
monitoring function to supervise the behavior of the first
auxiliary error of the closed loop system such that the sign
switching of control signal can be determined without us-
ing any adaptive law. We then show that, under the super-
vision of the monitoring function, the switching will stop
after at most a finite number of switchings, all the closed
loop signals are uniformly bounded and the tracking error
will converge to a residual set that can be made arbitrarily
small by appropriately choosing some design parameters.

2 Problem formulation

Consider the following single input/single output linear
time invariant plant

y = Gp(s)[u + d] = Kp
Ap(s)

Bp(s)
[u + d] (1)

where y and u are system output and input, respectively,
Bp(s) and Ap(s) are monic polynomials of degree n and m,
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respectively and, d is an input disturbance. With respect
to the controlled plant, we make the following assumptions:
A1) Gp(s) is of minimum phase. The parameters of Gp(s)
are unknown but belong to a known compact set. A2) The
order n of Ap(s) is a known constant. A3) The relative
degree n∗ > 1. A4) The sign of the high frequency gain
kp(6= 0) is unknown. A5) The disturbance d satisfies

|d(t)| ≤ d̄(t), ∀t ≥ 0 (2)

where d̄ is a known, piece-wise continuous and uniformly
bounded function.

The reference model is given by

yM = M(s)[r] =
KM

BM (s)
[r] (3)

where r is a piecewise continuous and bounded reference
input and Bm(s) is a monic and coprime Hurwitz polyno-
mial with deg(Bm(s)) = n∗. We define the tracking error
as

e = y − yM (4)

Much akin to [6], the control signal is defined as

u = Unom + θnom
2n r − uvs = θnomT

ω ω + θnom
2n r − uvs (5)

where uvs is the variable structure control law to be de-
signed,

ω := [νT
1 y νT

2 ]T ∈ <2n−1 (6)

in which ν1 and ν2 are generated by input/output filters
according to

ν̇1 = Λν1 + gu, ν1(0) = 0
ν̇2 = Λν2 + gy, ν2(0) = 0

ff
(7)

where Λ ∈ <(n−1)×(n−1) is a Hurwitz matrix, g ∈ <n−1,
and (Λ, g) is a controllable pair, and

θnom
ω := [θT

1 y θT
2 ]T ∈ <2n−1

θnom
2n ∈ <

ff
(8)

are the nominal values of θ∗ω and θ∗2n, which, modulo expo-
nentially decaying terms due to initial conditions, satisfy

y = Gp(s)[ωTθ∗ω + θ∗2nr] = M(s)r = yM (9)

Label Knom
p as the nominal value of Kp and

knom := Knom
p /KM

κ := (Kp −Knom
p )/Knom

p

ρ := 1 + κ

9
=
; (10)
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Then, after some algebraic manipulations, the tracking er-
ror can be expressed as

e = knomM(s)[−uvs − Ū ] + ε (11)

where ε decays exponentially due to nonzero initial condi-
tions and

Ū = ρ(θ∗Tω ω−Unom−Wd(s)[d])+(1/knom−ρθnom
2n )r+κUvs

(12)
with Wd(s) being a proper and stable transfer function from
d to e.

Because n∗ > 1, define Hurwitz polynomial

L(s) =

n∗−1Y
i=1

Li(s) =

n∗−1Y
i=1

(s + αi), αi > 0 (13)

such that M(s)L(s) is an SPR (Strictly positive real) func-
tion. The augmented signal is given by

ya := knomM(s)L(s)[U0 − L−1(s)[UN ]] (14)

and the auxiliary errors are

e0 := e− ya = knomM(s)L(s)[−U0 − L−1(s)[Ū ]] + ε
ei := F−1

i (s)[Ui−1]− L−1
i (s)[Ui], i = 1, 2, · · · , N

ff

(15)
with

UN := uvs (16)

and the averaging filters

F−1
i (s) := (τis + 1)−1 (17)

with τi small positive constants. To simplify our analysis,
let τ1 = · · · = τN := τ ; hence

F1(s) = · · · = FN (s) := F (s) (18)

Our control objective is to design the control signal uvs

which, as shown in (15) and (16), is achieved in a recursive
manner, so that the tracking error (11) can converge to a
small residual set for plants with n∗ > 1 and unknown HFG
sign.

3 Main results

3.1 Switching signals

Since the sign of Kp is unknown, one must decide what
signals should be switched. Obviously, the nominal value
of Kp, say, Knom

p , should have the same sign as Kp and
therefore its sign should be changed if it is considered to be
estimated incorrectly. From (15), U0 needs the knowledge
of the sign of Knom

p due to knom := Knom
p /KM . Further,

whenever the sign of Knom
p changes, θnom

ω and θnom
2n in (5)

should also be changed correspondingly. Define

θnom := [(θnom
ω )T θnom

2n ]T (19)

hence the above analysis shows that only the sign of (U0,
θnom) needs to be switched. Define

U0 =


U+

0 = f0sgn(e0), if t ∈ T+,
U−0 = −f0sgn(e0), if t ∈ T−,

θnom =


θnom+, if t ∈ T+,
θnom−, if t ∈ T−,

(20)

where f0 will be given later, (U+
0 , θnom+) and (U−0 , θnom−)

correspond to Kp > 0 and Kp < 0, respectively, the sets

T+ and T− satisfy T+∪T− = [0,∞) and T+∩T− = φ, and
both T+and T− are the union of the following intervals

[tk, tk+1) ∪ [tk+2, tk+3) ∪ · · · ∪ [tj , tj+1) (21)

where tk or tj denotes the switching time of (U0, θnom) and
will be designed later. We now give the definition for the
switching.

Definition 1. For each switching instant tk (k ≥ 1),
the switching of (U0, θ

nom) is defined as switched between
(U+

0 , θnom+) and (U−0 , θnom−) alternately.

3.2 Monitoring function and switching scheme

We then design a monitoring function to supervise the
behavior of the first auxiliary error so that it can decide
when (U0, θnom) should be switched. To this end, define
Lyapunov function

V0 = e2
0/2 (22)

With no loss of generality, let

M(s)L(s) = kM/(s + λ), λ > 0 (23)

Equation (15) can thus be written as

ė0 = −λe0 + knom[−U0 − L−1(s)[Ū ]] + ε (24)

The time derivative of (22) along the solution of (24) yields

V̇0 = −λe2
0 + knom[−U0 − L−1(s)[Ū ]]e0 + εe0 (25)

Suppose that after some t̄0 ≥ 0, the sign of Kp is correctly
estimated and −U0 − L−1[Ū ] in (24) is completely domi-
nated by U0. Then, we have knom[−U0− L−1(s)[Ū ]]e0 ≤
0, which implies that we can write (25) as

V̇0 ≤ −2λ̄V0 + ε2/2cε (26)

where we have applied the triangle inequality εe0 ≤
cεe

2
0/2 + ε2/(2cε) to the term εe0 with cε a positive con-

stant such that λ − cε/2 := λ̄ > 0. The above inequality
inspires us to construct the following first-order differential
equation

ξ̇0 = −2λ̄ξ0 + ε2/2cε, ξ0(t̄0) = V0(t̄0) (27)

Using the Comparison Lemma[10] to (26) and (27), and
noting that ξ0(t̄0) = V0(t̄0), we have V0(t) ≤ ξ0(t), ∀t ≥ t̄0.
Since ε is unknown but decays exponentially, there exist
positive constants cδ and δ, such that

ε ≤ cδ exp(−δ t), ∀t ≥ 0 (28)

Taking (28) into consideration, it can be checked that the
solution of (25) satisfies

V0(t) ≤ ξ0(t) ≤ exp[−2λ̄(t− t̄0)]V0(t̄0) + c0 exp(−2δt),

ξ0(t̄0) = V0(t̄0), ∀t ≥ t̄0 (29)

where
c0 := c2

δ/4cε(λ̄− δ) (30)

Here, we let δ < λ̄ because a less δ can only make the
estimate of ε more conservative. The monitoring function
is now constructed based on (29) as [8]

ϑk(t) := exp[−2λ̄(t− tk)]V0(tk) + (k + 1) exp(−2δkt) (31)

where the switching time tk is defined by (21) and {δk, 0 <
δk < λ̄} is any monotonically decreasing sequence satisfying
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δk → 0, as k →∞ (32)

which, together with the sequence {k + 1}, implies that
there exists a finite k such that both k + 1 > c0 and
exp(−2δ t) < exp(−2δkt) can be satisfied thereafter. At ev-
ery switching instant tk, in view of (31), we have V0(tk) <

ϑk(tk) which, considering the absolute continuity of e
[10]
0 ,

implies that the following definition of the switching time
is well-defined

tk+1 =8
<
:

min{t > tk : V0(t) = ϑk(t)},
if the minimum exists,

+∞, otherwise
k = 0, 1, · · · (33)

It is clear that a new switching occurs only when V0(t)
increases and is equal to ϑk.

3.3 Main theorem

According to the above analysis, the variable structure
control signals of (15) for the case of unknown HFG sign
are

U0 given by (20)
Ul = flsgn(el), l = 1, · · · , N − 1
UN = fN sgn(eN )

9
=
; (34)

where fi (i = 0, · · · , N − 1) and fN are defined by

fi = BND{F−1
1,i (s)L−1

i+1,N (s)L(s)[ρ(θ∗ω − θnom
ω )Tω̄+

κ(L−1(s)[u]− θnomT
ω ω̄) + ρWd(s)L−1(s)[d]]}+ ∆i

fN = BND{F−1
1,N (s)L(s)[(θ∗ω − θnom

ω )Tω̄+

(θ∗2n − θnom
2n )L−1(s)[r] + Wd(s)L−1(s)[d]]}+ ∆N

9
>>>>=
>>>>;
(35)

in which BND{ · } denotes an upper bound of a signal1,
∆i are arbitrarily positive constants, and

ω̄ = L−1(s)[ω]

Li,j(s) =
jQ

k=i

Lk(s) (Li,j(s) = 1 if j < i)

Fi,j(s) =
jQ

k=i

Fk(s) (Fi,j(s) = 1 if j < i)

9
>>>>=
>>>>;

(36)

We now give the main results of this paper.
Theorem 1. Suppose the plant to be controlled sat-

isfies assumptions A1)∼A5). Let the tracking error and
the auxiliary errors be defined by (11) and (15), respec-
tively, and let the corresponding VS control signals U0 and
Ui(i = 1, 2, · · · , N) be given by (34). Let the monitoring
function be defined by (31) and (U0, θ

nom) switch according
to Definition 1 with switching time defined by (33). Then,

1) the switching stops after at most a finite number of
switchings;

2) the tracing error e converges to a residual set propor-
tional to τ and all the signals of the close-loop system are
uniformly bounded.

Proof. 1) The proof is achieved by contradiction. Sup-
pose (U0, θnom) switches between (U+

0 , θnom+) and (U−0 ,
θnom−) alternately without stopping. Then, after a finite
number of k switchings, (U0, θnom) must have a correct
sign, i.e., (U0, θnom)=(U+

0 , θnom+) if Kp > 0 or (U0,
θnom)=(U−0 , θnom−) if Kp < 0, while

c0 < (k + 1)
exp(−2δ t) < exp(−2δkt), ∀t ≥ tk

ff
(37)

1The algorithm given by [6] may reduce the conservativeness of
conventionally used Euclidean norm when we obtain the BND{ · }.

where c0 is defined by (30). Therefore, from (29) (replacing
t̄0 with tk), and taking into account (31) and (37), we have

V0(t) < ϑk(t), ∀t > tk (38)

which, from (33) and (38), implies that no switching will
occur again, a contradiction. Hence, only finite switchings
are defined.

2) By (38) and (22),

|e0| ≤ EXP ⇒ e0 → 0, as t →∞ (39)

where EXP generically denotes an exponentially decaying
function. Applying Ui given by (34) to (15) and noting
that these subsystems have no relationship with the sign of
Kp, it can be proved, using the same technique as that in
[6], that

|ei| ≤ EXP (i = 1, · · · , N − 1)
|eN | ≤ τC ‖ω̄‖∞ + EXP

ff
(40)

where ‖x‖∞ := supt≥0 |x(t)|, and C generically denotes a
positive constant. Using Lemma 1 in Appendix A, we have

‖e‖∞ ≤ τC(1 + ‖ω̄‖∞) + EXP (41)

According to (6) and (36), ω̄ can be rewritten as

ω̄ = L−1(s)[((sI − Λ)−1gG−1
p (s)[e])T, e,

((sI − Λ)−1g[e])T]T + L−1(s)[((sI − Λ)−1g
(G−1

p (s)[yM ]− [d]))T, yM , ((sI − Λ)−1g[yM ])T]T
(42)

where Gp(s) is of minimum phase and therefore,
L−1(s)(sI − Λ)−1gG−1

p (s) is proper and stable. Further-
more, since d is bounded and yM is the output of reference
model, (41) and (42) imply that

‖ω̄‖∞ ≤ C(1 + ‖e‖∞) (43)

Combining (41) with (43) and letting τ < C−1, we have

‖ω̄‖∞ ≤ τC + C

1− τC

‖e‖∞ ≤ τC
1 + C

1− τC
+ EXP

9
>=
>;

(44)

Hence ω̄, e ∈ L∞, and the tracking error e converges to a
residual set that can be made arbitrarily small by choosing
τ .

To prove that all the signals of the close-loop system are
uniformly bounded, we need to prove that ω ∈ L∞. Note
that (44) implies that e ∈ L∞ and therefore y as well as
ν2 ∈ L∞ since y = yM + e. Hence, from (6), it suffices to
prove that ν1 ∈ L∞. From (7), we have

|ν̇1| = |Λν1 + gu| ≤
˛̨
˛Λν1 + g(θnomT

ω ω + θnom
2n r − uvs)

˛̨
˛

(45)
where from (34) and (35),

|(uvs)t| = |(UN )t| ≤ C(1 + ‖ω̄t‖∞) (46)

Taking (44) and (46) into consideration, it follows that

|ν̇1(t)| ≤ C + C ‖(ν1)t‖+ C ‖ωt‖∞ ≤ C(1 + ‖(ν1)t‖) (47)

which implies that ν1 is a regular signal(see page 70 in [11]).
Using Corollary 3.6.3( see page 140 in [11]), ω̄ ∈ L∞(see
(A.5) of Appendix A) implies that ν1, ω ∈ L∞. ¤

In particular, we have
Corollary 1. if ε = 0, then at most one switching is

needed.
Proof. The proof is the same as that given by [8] and

is therefore omitted. ¤
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4 Simulation results

The plant to be controlled was chosen as the following
relative degree two plant

Gp(s) = −4/(s2 − 0.6s− 2), x(0) = [0.5, 0.5]T (48)

where x is the state of a controllable canonical form of
Gp(s). The reference model was chosen as

M(s) = 2/(s + 2)2 (49)

The design parameters were chosen as follows: Λ = −2
and g = 1 for the input/output filters; L(s) = s+2 in (13);
Knom+

p = 2 and Knom−
p = 2; hence θnom+ = [−2,−2, 2, 1]T

and θnom− = [−2, 2,−2,−1]T, respectively. In the simula-
tion, we chose the upper bound of (θnom)∗ − θnom to be
[5, 5, 10, 10]T. We chose τ0 = τ1 = 0.05 for the averaging fil-
ters; ∆0 = ∆1 = 0.1 in (35); λ̄ = 1.8 in (26). The reference
signal was a square wave with amplitude 1 and frequency
2 rad/sec. The disturbance d = sin(0.5t). The signals
U0, U1 and the final control signal u were design according
to (34), (35) and (5), respectively. The monitor function
ϑk was chosen according to (31) with δk = 1/(k + 1). In
the simulation, we set Kp = Knom+

p at t = 0; that is, an
incorrect estimate of the sign of Kp was applied at the be-
ginning of the simulation. Figs. 1∼3 show that the unique
switching occurred at about t = 0.1s, and henceforth the
system output y tracked the model output yM perfectly.
Note that to avoid chattering, we replaced sgn(x) in (34)
with x/(|x|+ 0.001) in the simulation.

Fig. 1 y and yM

Fig. 2 Control signal uvs

Fig. 3 Monitor function ϑk
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Appendix A

Lemma 1. If (39) and (40) hold, the tracking error
can be expressed as ‖e‖∞ ≤ τC(1+ ‖ω̄‖∞)+EXP; that is,
(41) is satisfied.

Proof. It can be verified from (11), (14) and (15) that

e = e0 +
NP

i=1

knomM(s)L(s)[L−1
1,i−1(s)(F

−1
1,(N−i)(s)[ei])]−

knomM(s)L(s)[(F−1
1,N (s)− 1)[U0]]

(A1)
where L−1

1,i−1(s), F−1
1,(N−i) and F−1

1,N (s) are defined by

(36). Note that the term [(F−1
1,N (s) − 1)[U0]] in (A1) can

be expressed as

[(F−1
1,N (s)− 1)[U0]] = −τs

NX
i=1

1

(τs + 1)i
[U0]

(A2)
Further, since sM(s)L(s) is proper, we can rewrite it as

sM(s)L(s) = C + GML(s)

(A3)
Therefore, from (A1) and in view of (A2) and (A3), it

follows that

knomM(s)L(s)[(F−1
1,N (s)− 1)[U0]] =

−τknomC[
NP

i=1

1
(τs+1)i [U0]]− τknomGML(s)[

NP
i=1

1
(τs+1)i [U0]]

(A4)
Letting i = 0 in (35) and noting an upper bound of the

disturbance is known, we have

‖U0‖∞ ≤ C + C ‖ω̄‖∞ + C
‚‚L−1(s)[u]

‚‚
∞

(A5)
Here, to obtain (A5), we have used the inequality

‖z‖∞ ≤ C(1 + ‖x‖∞), where z = H(s)[x] with H(s) as
a proper and stable transfer function. Noting (16), we can
obtain the following equation from: (5)

L−1(s)[u] = θnomT
ω ω̄ + θnom

2n L−1(s)[r]− L−1(s)[UN ]

(A6)
Then, taking into account (46), we have

‚‚L−1(s)[u]
‚‚
∞ ≤ C(1 + ‖ω̄‖∞)

(A7)
which, together with (A5), implies that

‖U0‖∞ ≤ C(1 + ‖ω̄‖∞)

(A8)
In view of (A4), inequality (A8) means that

‚‚knomM(s)L(s)[(F−1
1,N (s)− 1)[U0]]

‚‚
∞ ≤ τC(1 + ‖ω̄‖∞)

(A9)
Considering (39), (40), (A1) and (A9), it is easy to verify

that (41) holds. ¤


