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Robust Adaptive Control of Nonholonomic Systems with
Nonlinear Parameterization

WANG Qiang-De1 WEI Chun-Ling1, 2

Abstract A global-adaptive state feedback control strategy is presented for a class of nonholonomic systems in chained form with
strong nonlinear drifts and unknown nonlinear parameters. A parameter separation technique is introduced to transform the nonlinear
parameterization nonholonomic system into a linear-like parameterized nonholonomic system. Then, the feedback domination design
is applied to design a global adaptive stabilization controller and a switching strategy is developed to eliminate the phenomenon
of uncontrollability. The proposed controller can guarantee that all the system states globally converge to the origin, while other
signals remain bounded. Simulation example demonstrates the effectiveness and the robust features of the proposed controller.
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1 Introduction

Over the last few years, the problem of controlling non-
holonomic dynamic systems has received considerable at-
tention and become a popular subject in the nonlinear con-
trol. There are three main reasons for this. Firstly, the non-
holonomic systems are frequently used to describe the prac-
tical control systems, such as mobile robots, car-like vehi-
cles, under-actuated satellites and the knife-edge[1∼5], can
all be modeled as nonholonomic control system. Secondly,
nonholonomic systems represent a special class of inher-
ently nonlinear systems for which the first approximation or
feedback linearization method is unfeasible and “pure non-
linear” analysis and synthesis method are needed. Finally,
from the technical point of view, the stabilization problems
of nonholonomic systems are exceptionally challenging and
difficult for the reason that as pointed out by Brockett[6] or
Krasnosel’skii-Zabreiko[7], this class of nonholonomic sys-
tems can not be asymptotically stabilized by any stationary
continuous state feedback, although they may be open loop
controllable. This motivates researchers to seek for various
approaches, which can be classified into time-varying feed-
back, discontinuous feedback and the combination of the
two. The time-varying feedback approach, which was first
proposed in [3], provides smooth/continuous controller and

no switching is required[8∼10]. This approach introduces
some persistent excitation signals in the control input to
guarantee the convergence of the closed-loop signals. How-
ever, the convergence rate of this approach is slow. More-
over, linear time-varying system theory[11] and Barbalat′s
lemma in [12] are often used to analyze the stability of the
closed-loop system. On the other hand, the discontinuous
feedback approach uses the discontinuous change of coor-
dinates and a switching control strategy to overcome the
difficulty of the loss of controllability[5,13,14]. The advan-
tage is its simplicity and fast transient response and the
drawback is that the control input is discontinuous.

However, those aforementioned papers only considered
the systems without drifts or with weak nonlinear drifts. A
class of nonholonomic systems perturbed by strong nonlin-
ear uncertainties was recently studied in [15∼17]. Discon-
tinuous state and output feedback controllers were designed
in [15] and achieved globally exponential stability. How-
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ever, the paper required that the x0-subsystem be Lipschitz
and there should be no parametric uncertainty. In [16], an
input-to-state scaling was introduced to remove the obsta-
cle of zero crossings of u0 and achieved global stabilization
of nonholonomic systems with strong nonlinear drifts and
parametric uncertainties. For the same system as in [16], an
adaptive state feedback and output feedback control strate-
gies were presented in [17]. In [18], the problem of almost
asymptotic stabilization and globally asymptotic regulation
for a class of high-order nonholonomic systems in power
chained form was solved. However, it should be noticed
that all these papers were concerned with systems with lin-
ear parameterization. There are very few reports in litera-
ture for adaptive control of nonlinearly parameterized non-
holonomic systems. However, many practical control sys-
tems such as biochemical processes[19] and machines with
friction[20], often contain unknown parameters that enter
the systems nonlinearly. Indeed, nonlinear parameteriza-
tions frequently arise and are inevitable in various realistic
dynamic models of practical control problems, as illustrated
in [21∼23]. From a theoretical viewpoint, adaptive control
of nonlinearly parameterized nonholonomic systems is also
interesting, because it represents a new challenge to the
theory of nonlinear adaptive control.

Unlike linear parameterization, nonlinear parameteriza-
tion is exceptionally difficult to estimate. In the recent
years, there have been some attempts to deal with this dif-
ficult problem. Under a condition that the bound of non-
linear parameters is known, globally adaptive control of
a class of nonlinearly parameterized systems was solved by
output feedback[21,22]. Recently, adaptive control of nonlin-
early parameterized systems has been reported in [24,25] for
convex or concave case and in [22] for a general case. More
recently, in [26], the globally adaptive control of nonlin-
early parameterized systems with uncontrollable lineariza-
tion has been solved by using parameter separation tech-
nique and feedback domination design which were used in
many papers[12,21,22,27,28].

In this paper, we will investigate the control of non-
holonomic systems in a chained form with strong nonlinear
drifts and unknown nonlinear parameters. Without impos-
ing any condition on the unknown parameters, combining
the parameter separation technique with the feedback dom-
ination design, a solution to the problem of global-adaptive
control for the uncertain nonholonomic systems is derived.
The proposed adaptive control algorithm guarantees that
all the states converge to the origin and other variables are
bounded.
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2 Problem formulation

In this paper, we consider the following uncertain non-
holonomic systems with nonlinear parameterization

ẋ0 = u0 + f0(x0, θθθ)

ẋi = xi+1u0 + fi(x0,xxx,θθθ), 1 ≤ i < n

ẋn = u1 + fn(x0,xxx,θθθ) (1)

where u0 and u1 are control inputs, x0 and xxx =
(x1, · · · , xn)T are system states, f0(x0, θθθ) and fi(x0,xxx,θθθ)
are continuous functions of their arguments, θθθ ∈ Rp is
an unknown constant vector. Functions f0(x0, θθθ) and
fi(x0,xxx,θθθ) denote the possible modeling error and ne-
glected dynamics. Note that function fi may include un-
certain drift terms.

Clearly, when f0(x0, θθθ) = 0 and fi(x0,xxx,θθθ) = 0 for
all 1 ≤ i ≤ n, system (1) becomes a standard chained
system which has been extensively studied in the liter-
ature. When f0(x0, θθθ) = f0(x0)

Tθθθ and fi(x0,xxx,θθθ) =
f0(x0, x1, · · · , xi)

Tθθθ, system (1) has been studied by Do
in [16] and by Ge in [17].

We impose the following assumption on f0(x0, θθθ) and
fi(x0,xxx,θθθ).

Assumption 1. For i = 1, · · · , n,

|fi(x0,xxx,θθθ)| ≤ (|x0|+ · · ·+ |xi|)bi(x0, x1, · · · , xi, θθθ) (2)

f0(x0, θθθ) = x0b0(x0, θθθ) (3)

where b0(x0, θ) is continuous function and bi(x0, x1, · · · ,
xi, θθθ) (i = 1, · · · , n) is nonnegative continuous function.

The above assumption implies that the origin is the equi-
librium point of system (1).

The control problem in this paper is stated as follows.
Definition 1. System (1) is said to be adaptive glob-

ally asymptotically regulated (AGAR) at the origin by a
adaptive state feedback controller of the form

˙̂
ϑ0 = υ0(x0, ϑ̂0), u0 = µ0(x0, ϑ̂0)

˙̂
ϑ = υ(x0,xxx, ϑ̂0, ϑ̂), u1 = µ(x0,xxx, ϑ̂0, ϑ̂)

(4)

if all the solutions of the closed-loop system (1)∼(4) are
bounded and well defined over [0, +∞). Furthermore,

lim
t→+∞

xi(t) = 0 for all 0 ≤ i ≤ n.

Lemma 1. For any real-value function π(xxx,yyy) > 0,

|xxxyyy| ≤ 1

2
π(xxx,yyy)xxx2 +

1

2
π−1(xxx,yyy)yyy2 (5)

Lemma 2[26] (Parameter separation technique). For
any real-valued continuous function f(xxx,yyy), where xxx ∈ Rn

and yyy ∈ Rm, there are smooth scalar functions a(xxx) ≥
0, b(yyy) ≥ 0, c(xxx) ≥ 1 and d(yyy) ≥ 1, such that

|f(xxx,yyy)| ≤ a(xxx) + b(yyy), |f(xxx,yyy)| ≤ c(xxx)d(yyy) (6)

Remark 1. By Lemma 2, for i = 0, · · · , n, there
exist smooth functions γi(x0, · · · , xi) ≥ 1 and ci(θθθ) ≥ 1
satisfying

|bi(x0, · · · , xi, θθθ)| ≤ γi(x0, · · · , xi)ci(θθθ) (7)

Since θθθ is a constant vector, ci(θθθ) is a constant as well.
Let ϑ1 :=

Pn
i=0 ci(θθθ) and ϑ = ϑ2

1 be two new unknown
constants. Then, Assumption 1 implies that

|f0(x0, θθθ)| ≤ |x0| γ0(x0)ϑ1 (8)

|fi(x0,xxx,θθθ)| ≤ (|x1|+ · · ·+ |xi|)γi(x0, x1, · · · , xi)ϑ1 (9)

3 The stabilization of x0-subsystem

In order to obtain the stabilization of the x0−subsystem
and remove the obstacle of zero crossings of u0, we design
the control input u0 using feedback domination method
such that only when the state x0 approaches to the origin,
u0 crosses zero. We consider the problem in two cases:
x0(t0) 6= 0 and x0(t0) = 0. Without loss of generality, we
assume that t0 = 0.

Case 1. x0(0) 6= 0.

Select Lyapunov function V0(x0, ϑ̃0) = 1
2
x2

0 + 1
2Γ0

ϑ̃2
0,

where ϑ̃0 = ϑ1 − ϑ̂0, ϑ̂0 is an estimate of ϑ1, and Γ0 > 0
is a design constant. By Assumption 1 and Remark 1, it is
easy to see that

V̇0(x0, ϑ̃0) ≤ x0u0 + x2
0γ0(x0)(ϑ̂0 + ϑ̃0)− Γ−1

0
˙̂
ϑ0ϑ̃0 (10)

With the choice of the smooth adaptive controller

u0(x0, ϑ̂0) = −x0

q
k2
0 + (γ0ϑ̂0)2 − x0γ0ϑ̂0

= x0β0(x0, ϑ̂0), (11)

˙̂
ϑ0 = Γ0x

2
0γ0(x0) = Γ0τ0(x0) (12)

we have

V̇0(x0, ϑ̃0) ≤ −x2
0

q
k2
0 + (γ0ϑ̂0)2 ≤ −k0x

2
0 (13)

where k0 is a positive constant.
Case 2. x0(0) = 0.

We design the controller u0(x0, ϑ̂0) as follows

u0 =


x0β0 + λ0

x0β0

when x0β0 + λ0 ≥ u∗0 and t ≤ ts

else
(14)

where λ0 > 0, ts > 0 and 0 < u∗0 < λ0 are design constants,

β0(x0, ϑ̂0) and the update law for ϑ̂0 are given in (12).

Theorem 1. For any initial conditions (x0(0), ϑ̂0(0)) ∈
R2, the switching control strategy (11), (12) and (14)
guarantees that the solution x0(t) exists and the param-

eter estimator ϑ̂0(t) is bounded and converges to an in-

variant set. Furthermore, the control u0(x0, ϑ̂0) given by
(11) or (14) also exists, does not cross zero and satisfies

limt→∞ u0(x0(t), ϑ̂0(t)) = 0.

Proof. Consider the Lyapunov function V0(x0, ϑ̃0) =
1
2
x2

0 + 1
2Γ0

ϑ̃2
0.

For the case of x0(0) 6= 0, from (13), we can see that

limt→∞ x0(t) = 0 and ϑ̂0(t) is bounded.

For the case of x0(0) = 0, differentiating V0(x0, ϑ̃0) along
the solution of x0-subsystem, we can obtain that

V̇0 ≤
 −k0x

2
0 + λ0x0

−k0x
2
0

when 0 ≤ t ≤ t∗

else
(15)

Clearly, lim
t→∞

x0(t) = 0 for t > t∗. Owing to −k0x
2
0 +

λ0x0 ≤ −k0(x0− λ0
2k0

)2+
λ2
0

4k0
, we know that x0(t) is bounded

for 0 ≤ t ≤ t∗.
So, for any initial conditions (x0(0), ϑ̂0(0)) ∈ R2,

limt→∞ x0(t) = 0 and ϑ̂0(t) is bounded.
Moreover, we need to show that x0(t) does not cross zero.
From the selection of t∗, x0(t) does not cross zero for the

case x0(0) = 0 and 0 < t ≤ t∗. For the case x0(0) 6= 0,
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substituting (11) into x0-subsystem, we have

ẋ0 = −x0(

q
k2
0 + (γ0ϑ̂0)2 + γ0ϑ̂0 − b0(x0, θθθ)) (16)

Since x0(t) and ϑ̂0(t) are bounded and θθθ is a constant
vector, the solution of (16) is

x0(t) = x0(0)e−
R t
0 ψ(s)ds (17)

where ψ(s) =

q
k2
0 + (γ0(x0(s))ϑ̂0(s))2 + γ0(x0(s))ϑ̂0(s) −

b0(x0(s), θθθ).
Clearly, only when t = ∞ or at t = 0 and x0(0) = 0,

x0(t) = 0.

Hence, u0(x0, ϑ̂0) given by (11) or (14) also exists, does

not cross zero and satisfies limt→∞ u0(x0(t), ϑ̂0(t)) = 0. ¤

4 Input-to-state scaling

The above design can assure that u0(t) is unequal to zero
in finite time scale. However, u0(t) will converge to zero
as t goes to ∞. This phenomenon causes serious trouble
in controlling the x-subsystem via the control input u1,
because, in the limit, the x-subsystem is uncontrollable.

To avoid the phenomenon, introduce a state scaling dis-
continuous transformation as follows

zi =
xi

un−i
0

, i = 1, · · · , n (18)

This discontinuous coordinates transformation was used
in [16], and is an improvement of the coordinates transfor-
mation used in [13,15,17].

Under the new z−coordinates, the x-subsystem is trans-
formed into

ẋ0 = u0(x0, ϑ̂0) + f0

żi = zi+1 + φi1(x0, zi, ϑ̂0) + φi2(x0, z̄zzi, ϑ̂0, θθθ)

(1 ≤ i < n)

żn = u1 + φn2(x0, zzz,θθθ) (19)

where φi1(x0, zi, ϑ̂0) = −(n − i)zi(
∂u0
∂x0

+ 1
u0

∂u0
∂ϑ̂0

Γ0τ0),

φi2(x0, z̄zzi, ϑ̂0, θθθ) = fi(x0,x1,··· ,xi,θθθ)

un−i
0

− zi
n−i
u0

∂u0
∂x0

f0(x0, θθθ),

(1 ≤ i < n), φn2(x0, zzz,θθθ) = fn(x0,xxx,θθθ), z̄zzi =
[z1, · · · , zi], zzz = [z1, · · · , zn].

Consequently, the following lemma can be established.
Lemma 3. For each 1 ≤ i ≤ n, there exists a smooth

function ωi(x0, z̄zzi, ϑ̂0) > 0 such that
˛̨
˛φi2(x0, z̄zzi, ϑ̂0, θθθ)

˛̨
˛ ≤ (|z1|+ · · ·+ |zi|)ωi(x0, z̄zzi, ϑ̂0)ϑ1 (20)

5 Feedback domination design

In this section, we first design the control input u1 in
the case x0(0) 6= 0. Then, the case of x0(0) = 0 will be
discussed.

Case 1. x0(0) 6= 0.
Step 1. Consider the Lyapunov function V1 = 1

2
ξ2
1 +

1
2Γ

ϑ̃2, where ξ1 = z1, ϑ̃ = ϑ− ϑ̂, ϑ̂ is an estimator of ϑ, and
Γ > 0 is a constant to be designed. From (19) and Lemma
3, we can see that

V̇1 = ξ1(z2 + φ11 + φ12)− 1

Γ
ϑ̃

˙̂
ϑ

≤ ξ1(z2 + φ11) + |ξ1| · |ξ1|ω1ϑ− 1

Γ
ϑ̃

˙̂
ϑ (21)

Define

ρ1 = ω1, τ1 = Γξ2
1ρ1

α1(x0, z1, ϑ̂0, ϑ̂) = −nξ1 − φ11 − ξ1ρ1ϑ̂ (22)

Clearly, there is α1(x0, 0, ϑ̂0, ϑ̂) = 0, then

V̇1 ≤ −nξ2
1 + ξ1(z2 − α1)− (

1

Γ
ϑ̃ + η1)(

˙̂
ϑ− τ1) (23)

where η1 = 0.
Inductive step. Suppose there are a set of C∞ virtual

controllers αi(x0, z̄zzi, ϑ̂0, ϑ̂), with αi(x0, 0, ϑ̂0, ϑ̂) = 0, 1 ≤
i ≤ k, and a Lyapunov function Vk(x0, z̄zzk, ϑ̂0, ϑ̂), such that

V̇k ≤ −(n− k + 1)

kX
i=1

ξ2
i − (

1

Γ
ϑ̃ + ηk)(

˙̂
ϑ− τk) +

ξk(zk+1 − αk) (24)

where ξi = zi − αi−1, i = 2, · · · , k. Then, in the (k + 1)th
step, we claim that (24) holds as well. The reason of this
is as follows. Define ξk+1 = zk+1 − αk and consider the
Lyapunov function Vk+1 = Vk + 1

2
ξ2

k+1. Then, the time
derivative of Vk+1 is

V̇k+1 ≤ −(n− k + 1)
kP

i=1

ξ2
i − ( 1

Γ
ϑ̃ + ηk)(

˙̂
ϑ− τk)+

ξkξk+1 + ξk+1[zk+2 + φ(k+1)1 + φ(k+1)2 − ∂αk
∂x0

(u0 + f0)−
kP

i=1

∂αk
∂zi

(zi+1 + φi1 + φi2)− ∂αk

∂ϑ̂0
Γ0τ0 − ∂αk

∂ϑ̂

˙̂
ϑ]

(25)

By Lemma 3 and the fact of αi(x0, 0, ϑ̂0, ϑ̂) = 0, there
are smooth functions Wk+1(·) ≥ 0 and W̄k+1(·) ≥ 0, such
that

˛̨
˛̨
˛φ(k+1)2 − ∂αk

∂x0
f0 −

kX
i=1

∂αk

∂zi
φi2

˛̨
˛̨
˛

≤ (|z1|+ · · · |zk+1|) Wk+1(x0, z̄zzk+1, ϑ̂0, ϑ̂)ϑ1

≤ (|ξ1|+ · · ·+ |ξk+1|) W̄k+1(x0, z̄zzk+1, ϑ̂0, ϑ̂)ϑ1(26)

Then, from Lemma 2, it is easy to see that there is a
smooth function ρk+1(·) ≥ 0, such that

|ξk+1|
˛̨
˛̨
˛φ(k+1)2 − ∂αk

∂x0
f0 −

kX
i=1

∂αk

∂zi
φi2

˛̨
˛̨
˛

≤
kX

i=1

ξ2
i + ξ2

k+1ρk+1(x0, z̄zzk+1, ϑ̂0, ϑ̂)ϑ (27)

So, (25) can be rewritten as follows

V̇k+1 ≤ −(n− k)

kX
i=1

ξ2
i − (

1

Γ
ϑ̃ + ηk+1)(

˙̂
ϑ− τk+1) +

ξk+1[zk+2 + ρ̄k+1 + ξk+1ρk+1ϑ̂− Γηkξk+1ρk+1] (28)

where τk+1 = τk + Γξ2
k+1ρk+1 , ρ̄k+1 = ξk + φ(k+1)1 −

∂αk
∂x0

u0 −
kP

i=1

∂αk
∂zi

(zi+1 + φi1)− ∂αk

∂ϑ̂0
Γ0τ0 − ∂αk

∂ϑ̂
τk+1, ηk+1 =

ηk + ξk+1
∂αk

∂ϑ̂
.

Then, the virtual controller

αk+1 = −(n− k)ξk+1 − ρ̄k+1 − ξk+1ρk+1ϑ̂ +

Γηkξk+1ρk+1 (29)
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renders

V̇k+1 ≤ −(n− k)

k+1X
i=1

ξ2
i − (

1

Γ
ϑ̃ + ηk+1)(

˙̂
ϑ− τk+1) +

ξk+1(zk+2 − αk+1) (30)

The aforementioned inductive argument shows that (24)
holds for k = n. In fact, at the nth step, one can construct a
global change of coordinates (ξ1, · · · , ξn), a positive definite
and proper Lyapunov function Vn and a smooth controller

αn(x0, zzz, ϑ̂0, ϑ̂) of the form (29), such that

V̇n ≤ −
nX

i=1

ξ2
i − (

1

Γ
ϑ̃ + ηn)(

˙̂
ϑ− τn) + ξn(u1 − αn) (31)

Therefore, the smooth adaptive controller

˙̂
ϑ = τn = τn−1 + Γξ2

nρn (32)

u1 = αn = −ξn − ρ̄n − ξnρnϑ̂ + Γηn−1ξnρn (33)

renders
V̇n ≤ −(ξ2

1 + · · ·+ ξ2
n) (34)

Case 2. x0(0) = 0.
In this case, the control input u0 is given in (14). Dur-

ing the time period [0, t∗], applying the same design pro-
cedure as that in case 1 to the z-subsystem in (19) with
u0 defined in the first equation of (14), we can design

u1 = u∗1(x0, zzz, ϑ̂0, ϑ̂) and
˙̂
ϑ = ϑ̂∗(x0, zzz, ϑ̂0, ϑ̂) to guarantee

that z-state can not blow up. At t = t∗, since x0(t
∗) 6= 0,

we switch the control input u0 and u1 to (11) and (33),
respectively.

Theorem 2. Under Assumption 1, if the above switch-
ing control scheme, designed in Sections 3∼5, is applied
to system (1), then the closed-loop system is globally
asymptotic-regulated at the origin and all the signals are
globally bounded.

6 Simulation

To verify our proposed controller, we consider the fol-
lowing system.

ẋ0 = u0 + xθ0
0

ẋ1 = u0x2 + x1θ
x1
1

ẋ2 = u1 + ln(1 + (θ2x2)
2)

where θi, i = 0, 1, 2 is unknown bounded parameter and
satisfies θ0 > 1, θ1 > 0 and θ2 ∈ R. The control objective
is to design u0 and u1 such that (x0(t), x1(t), x2(t)) → 0 as
t →∞ for any initial value.

From Theorems 1 and 2, we can design the adaptive
controller as follows:

When x0(0) 6= 0,

u0 = x0β0

˙̂
ϑ0 = Γ0x

2
0e

1
8 ln2(1+x2

0)

u1 = ξ2 − φ21 − ξ2ρ2ϑ̂

˙̂
ϑ = Γ (ξ2

2ρ2 + ξ2
1ρ1)

When x0(0) = 0,

u0 =


x0β0 + λ0,
x0β0,

if x0β0(x0, ϑ̂0) + λ0 ≥ u∗0 and t ≤ ts

else

Fig. 1 Simulation results with (x0(0), x1(0), x2(0)) = (1.5, 1, 1)

Fig. 2 Simulation results with (x0(0), x1(0), x2(0)) = (0, 1, 1)

where β0 = (−e
1
8 ln(1+x2

0)ϑ̂0 −
q

k2
0 + (e

1
8 ln(1+x2

0)ϑ̂0)2, ξ1 =

z1, ξ2 = z2 − α1, z1 = x1
u0

, z2 = x2, α1 = −2ξ1 + ξ1φ11 −
ξ1ρ1ϑ̂, φ11, φ21, ρ1, ρ2 are known functions.

The unknown system parameters θ0, θ1 and θ2 are as-
sumed to be 1.5, 0.5 and 0.5, respectively. In simulation,
the design parameters are chosen as k0 = 2.5, λ0 = 5, u∗0 =
3, ts = 0.2, Γ0 = Γ = 0.1. The simulation results for the
case of initial conditions (x0(0), x1(0), x2(0)) = (1.5, 1, 1),

(ϑ̂0(0), ϑ̂(0)) = (0.1, 0.1) are shown in Fig.1 while the re-

sults for (x0(0), x1(0), x2(0)) = (0, 1, 1), (ϑ̂0(0), ϑ̂(0)) =
(0.1, 0.1) are in Fig.2. From the figures, it is clear to see
that all of the states asymptotically converge to the ori-
gin, the controls are bounded and converge to zero and the
parameters estimates are bounded.

7 Conclusion

By using a parameter separation technique, an input-to-
state scaling and a feedback domination design, a globally
adaptive state feedback controller is designed for a class
of uncertain nonholonomic system in chained form with
strong nonlinear drifts and nonlinear parameters. When
the initial value x0(0) is unequal to zero, the control law
is smooth. When the initial value x0(0) is equal to zero, a
switching control strategy is proposed. The system states
have been proved to globally converge to the origin and
the parameters estimators are bounded. Simulation result
has shown the effectiveness and feasibility of the proposed
control strategy.
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