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A New Feedback-feedforward
Configuration for the Iterative
Learning Control of a Class of

Discrete-time Systems

HOU Zhong-Sheng1 XU Jian-Xin2

Abstract This paper presents a new feedback-feedforward
configuration for the iterative learning control (ILC) design with
feedback, which consists of a feedback and a feedforward com-
ponent. The feedback integral controller stabilizes the system,
and takes the dominant role during the operation, and the feed-
forward ILC compensates for the repeatable nonlinear/unknown
time-varying dynamics and disturbances, thereby enhancing the
performance achieved by feedback control alone. As the most
favorable point of this control strategy, the feedforward ILC and
the feedback control can work either independently or jointly
without making efforts to reconfigurate or retune the feedfor-
ward/feedback gains. With rigorous analysis, the proposed
learning control scheme guarantees the asymptotic convergences
along the iteration axis.

Key words Iterative learning control, feedforward control,
feedback control, nonlinear systems

1 Introduction
Since iterative learning control (ILC) was first proposed

by [1] in 1984 for the control of a system that repeats the
same task in a finite interval, it has been extensively stud-
ied and significant progress has been made in both theory
and applications [1∼12]. However, although sufficient condi-
tions are given to guarantee the convergence of the learning
process, the trajectory error is likely to grow quite signifi-
cantly before it converges to zero in the process of learning,
and the rate of the convergence is often slow. These phe-
nomena are owing to the fact that the control structure is
basically an open loop and this control structure alone does
not compensate for the output error in each trial. There-
fore, the performance in the early stages of learning can be
bad for stable plants, and even worse for unstable plants.
The use of conventional feedback controllers can help to
solve overcome this kind of problem in the transient stages
of learning since they can compensate for the control input
to reduce the error.

The learning process of making advantage of the current
feedback error or the feedback configuration can be found in
[8]. Reference [8]proposed a model-based learning scheme
for the robot manipulators with feedback controllers, but
without giving a rigorous analysis for the convergence of the
learning process. [9] suggested an ILC scheme for a class of
nonlinear systems with high gain feedback PD controller,
which update to the feedforward control input with the
feedback controller output. In [7], a discrete ILC was pro-
posed for discrete-time nonlinear time-varying systems with
initial state error, input disturbance, and output measure-
ment noise. In [10], a D-type ILC was done in a feedback
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configuration. The learning process was performed in the
feedforward input updated by the previous plant input and
the derivative of the previous error. The rapid convergence
was shown either by technical proof[7] or by simulation[10]

as compared with the traditional feedforward learning.
Some other ILC designs in a feedback configuration could

be found in [11,13∼14]. However, they still did not show, in
a mathematics meaning, what the clear functions of feed-
forward ILC algorithm and feedback controller in the com-
posite feedforward/feedback configuration are. So far, al-
most all the descriptions of the functions for the feedfor-
ward or feedback component in a combined configuration
are based on the qualitative induction rather than the the-
oretical analysis. This is certainly an important issue both
in theory and practical applications.

In this paper, we propose an ILC control scheme for a
class of discrete-time nonlinear systems over a finite time
interval in a new feedforward-feedback configuration. The
function of the feedforward, acting as a compliable com-
ponent in this configuration, rejecting exogenous distur-
bances, and compensating for the nonlinear and and time-
varying plant, is to meet the high tracking performance
requirement. Meanwhile the feedback component serves as
the main controller.

2 Problem statement
2.1 Problem formulation

The following discrete-time nonlinear time-varying sys-
tems are considered.

xxxn(k + 1) = fff(xxxn(k), yyyn(k), k), (1)

yyyn(k + 1) = ggg(xxxn(k), yyyn(k),uuun(k), k), (1′)

where n and k are the iteration index and discrete-time,
respectively. For simplicity in the following discussion, let
xxxn(k) ∈ Rp, yyyn(k) ∈ Rp, and uuun(k) ∈ Rp for all k ∈ [0, K]
and n ∈ [1,∞). uuun(k) is the control variable. fff(·) and g(·)
are nonlinear functions.

Assumption 1. Functions fff and ggg are uniformly glob-
ally Lipschitz with respect to xxx, yyy and uuu for k ∈ [0, 1, . . . , K]
on a compact set Ω ∈ Rp × Rp × [1, K] or Ω ∈ Rp × Rp ×
Rp × [1, K], i.e.,

‖fff(xxx1(k), yyy1(k), k)− fff(xxx2(k), yyy2(k), k)‖
≤ kfx‖xxx1(k)− xxx2(k)‖+ kfy‖yyy1(k)− yyy2(k)‖, (2)

‖ggg(xxx1(k), yyy1(k),uuu1(k), k)− ggg(xxx2(k), yyy2(k),uuu2(k), k)‖
≤ kgx‖xxx1(k)− xxx2(k)‖+ kgy‖yyy1(k)− yyy2(k)‖
+ kgu‖uuu1(k)− uuu2(k)‖,

(2′)

where kfx, kfy, kgx, kgy, kgu are the Lipschitz constants.

Furthermore gx = ∂ggg((xxx,yyy,uuu,k)
∂xxx

, gy = ∂ggg(xxx,yyy,uuu,k)
∂yyy

, gu =
∂ggg(xxx,yyy,uuu,k)

∂uuu
are uniformly bounded for all (·, ·, ·, ·) ∈ Ω. And

there exist constants α1 and α2 such that 0 ≤ α1 ≤ gu ≤
α2.

Assumption 2. The re-initialization condition is sat-
isfied throughout the repeated iterations, i.e., xxxn(0) =
xxxd(0), yyyn(0) = yyyd(0), ∀n.

Assumption 3. There exists a control input uuud(k) that
can exactly drive the system output to track the desired
trajectory yyyd(k) for the systems (1) and (1′) on the finite
time interval.

The control objective is to design an iterative learning
controller uuun(k) such that the output tracking error be-
tween the desired output trajectory yyyd(k) and the system
output yyyn(k) is within an error bound, which can be pre-
determined.
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2.2 ILC controller add-on to feedback controller

The discrete-time ILC controller is constructed as follows

uuun(k) = uuuf
n(k) + uuub

n(k), (3)

uuuf
n(k) = uuuf

n−1(k) + βeeen−1(k + 1), (3′)

uuuf
n(0) = αeeen(0) uuub

n(0) given if k = 0, (3′′)

uuub
n(k) = uuun(k − 1) + αeeen(k), if k > 0, (3′′′)

where n indicates the iteration number, and β and α are
the iterative learning gain matrix and the feedback gain
matrix, respectively and eeen(k + 1) = yyyd(k + 1)−yyyn(k + 1).

3 Convergence Analysis
Two cases are considered in this paragraph. First, we

consider the convergence analysis of the pure ILC control
for system (1), using the iterative learning controller (3′),
and then we consider the ILC controller with feedback con-
troller.

Theorem 1. Under Assumptions 1-3, choose the learn-
ing gain matrix β such that ‖1 − βgu‖ < 1, for ∀gu ∈
[α1, α2], in the learning law (3′). Then the output of sys-
tem (1) controlled by the learning controller (3′) will lead to
limn→∞ ‖uuub

n(k)−uuud(k)‖λ ≤ σ, limn→∞ ‖yyyn(k)−yyyd(k)‖λ ≤
σ for some suitably defined constant σ > 0 that de-
pends on ‖δxxxn(0)‖ and ‖eeen(0)‖. In the sequel, we have
limn→∞ ‖uuub

n(k)−uuud(k)‖λ = 0, limn→∞ ‖yyyn(k)−yyyd(k)‖λ =
0, if ‖δxxxn(0)‖ = 0 and ‖eeen(0)‖ = 0.

Proof. Similar to that of Theorem 2.
Theorem 2. Under Assumptions 1-3, choose the learn-

ing gain matrix β such that ‖1 − βgu‖ < 1, for ∀gu ∈
[α1, α2], in the learning law (3). Then the output of system
(1) controlled by the learning controller with a feedback
control (3)-(3′′′) will lead to limn→∞ ‖uuub

n(k)−uuud(k)‖λ ≤ σ,
limn→∞ ‖yyyn(k) − yyyd(k)‖λ ≤ σ for some suitably defined
constant σ > 0 which is a class-K function of ‖δxxxn(0)‖,
‖eeen(0)‖, ‖δuuub

n(0)‖ and M . If they all equal to zero, then
limn→∞ ‖uuub

n(k)−uuud(k)‖λ = 0, limn→∞ ‖yyyn(k)−yyyd(k)‖λ =
0.

Proof. Let δxxxn(k) = xxxd(k) − xxxn(k), δuuun(k) = uuud(k) −
uuun(k). Then from (3), we have

uuuf
n+1(k) = uuuf

n(k) + βeeen(k + 1), (4)

δuuun(k) = uuud(k)− uuuf
n(k)− uuub

n(k) = δuuub
n(k)− uuuf

n(k) (4′)

Using the differential mean value theorem, we have

eeen(k + 1) = yyyd(k + 1)− yyyn(k + 1) =

ggg(xxxd(k), yyyd(k),uuud(k), k)−
ggg(xxxn(k), yyyn(k),uuun(k), k) =

gggx(ξξξn)δxxxn(k) + gggy(ξξξn)eeen(k) + gggu(ξξξn)δuuun(k) =

gggx(ξξξn)δxxxn(k) + gggy(ξξξn)eeen(k) + gggu(ξξξn)δuuub
n(k)−

gggu(ξξξn)uuuf
n(k),

(5)

where ξξξn = [(xxxn(k)+τδxxxn(k))T, (yyyn(k)+τeeen(k))T, (uuun(k)+
τδuuun(k))T, k]T, τ ∈ [0, 1].

Inserting (5) into (4) gives

uuuf
n+1(k) = (1− βgggu(ξξξn)uuuf

n(k) + βgggx(ξξξn)δxxxn(k)+

βgggy(ξξξn)eeen(k) + βgggu(ξξξn)δuuub
n(k).

(6)

Taking norm on both sides of (6) yields

‖uuuf
n+1(k)‖ = ‖(1− βgggu(ξξξn)‖‖uuuf

n(k)‖+ σ1(‖δxxxn(k)‖+
‖eeen(k)‖+ ‖δuuub

n(k)‖).
(7)

with σ1 = supk∈[1,K](‖βgggx(ξξξn)‖, ‖βgggy(ξξξn)‖, ‖βgggu(ξξξn)‖).
From (1) and (2), we can get

‖δxxxn(k)‖ ≤ kfx‖δxxxn(k − 1)‖+ kfy‖eeen(k − 1)‖ (8)

From (2′) and (4′), we have

‖eeen(k)‖ ≤ kgx‖δxxxn(k − 1)‖+ kgy‖eeen(k − 1)‖+
kgu‖δuuun(k − 1)‖ ≤
kgx‖δxxxn(k − 1)‖+ kgy‖eeen(k − 1)‖+
kgu(‖δuuub

n(k − 1)‖+ ‖uuuf
n(k − 1)‖

(9)

By (9), we get

‖δuuub
n(k)‖ = ‖uuud(k)− uuun(k − 1)− αeeen(k)‖ =

‖uuud(k)− uuuf
n(k − 1)− uuub

n(k − 1)− αeeen(k)‖ ≤
‖δuuub

n(k − 1)‖+ ‖uuuf
n(k − 1)‖+

α‖eeen(k)‖+ ‖4uuud(k)‖ ≤
‖δuuub

n(k − 1)‖+ ‖uuuf
n(k − 1)‖+

α[kgx‖δxxxn(k − 1)‖+ kgy‖eeen(k − 1)‖+
kgu‖δuuub

n(k − 1)‖+ kgu‖uuuf
n(k − 1)‖]

+ ‖4uuud(k)‖ =

(1 + αkgu)(‖δuuub
n(k − 1)‖+ ‖uuuf

n(k − 1)‖)+
αkgx‖δxxxn(k − 1)‖+
kgy‖eeen(k − 1)‖+ ‖4uuud(k)‖,

(10)

where 4uuud(k) = uuud(k)− uuud(k − 1)
Adding (8), (9), and (10), using Assumption 2, gives

(‖δxxxn(k)‖+ ‖eeen(k)‖+ ‖δuuub
n(k)‖) ≤

σ2(‖δxxxn(k − 1)‖+
‖eeen(k − 1)‖+ ‖δuuub

n(k − 1)‖)+
(kgu + 1 + αkgu)‖uuuf

n(k − 1)‖+
‖4uuud(k)‖ ≤
. . . ≤ σk

2 (‖δxxxn(0)‖+ ‖eeen(0)‖+ ‖δuuub
n(0)‖)+

(kgu + 1 + αkgu)

k−1X
i=0

σk−i−1
2 ‖uuuf

n(i)‖+

kX
i=1

σk−i
2 ‖4uuud(i)‖ ≤

σk
2 (‖δxxxn(0)‖+ ‖eeen(0)‖+ ‖δuuub

n(0)‖)+

(kgu + 1 + αkgu)

k−1X
i=0

σk−i−1
2 ‖uuuf

n(i)‖+

M
σK

2 − 1

σ2 − 1
,

(11)

where σ2 = supk∈[0,K]{(kfx + kgx + αkgx), (kfy + kgy +

αkgy), (kgu + 1 + αkgu)}, and M = maxk∈[0,K]‖4uuud(k)‖.
Without loss of generality, we will assume σ2 > 1 for the
following discussions.

Multiplying σ−λk
2 on both sides of (11) on interval [0, K]
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and then taking supreme norm, we have

(‖δxxxn(k)‖λ + ‖eeen(k)‖λ + ‖δuuub
n(k)‖λ) ≤

(‖δxxxn(0)‖+ ‖eeen(0)‖+ ‖δuuub
n(0)‖)+

(kgu + 1 + αkgu)‖uuuf
n(k)‖λ

1− σ
−(λ−1)K
2

σλ
2 − σ2

+

M
σK

2 − 1

σ2 − 1
.

(12)

Inserting (12) into (7) gives

‖uuuf
n+1(k)‖λ ≤ ‖(1− βgu(ξξξn))‖‖uuuf

n(k)‖λ+

σ1(‖δxxxn(0)‖+ ‖eeen(0)‖+ ‖δuuub
n(0)‖)+

σ1(kgu + 1 + αkgu)‖uuuf
n(k)‖λ

1− σ
−(λ−1)K
2

σλ
2 − σ2

+

σ1M
σK

2 − 1

σ2 − 1
.

(13)

Equation (13) can be rewritten as

‖uuuf
n+1(k)‖λ ≤ [‖(1− βgu(ξξξn))‖+

σ1(kgu + 1 + αkgu)
1− σ

−(λ−1)K
2

σλ
2 − σ2

]‖uuuf
n(k)‖λ+

σ1(‖δxxxn(0)‖+ ‖eeen(0)‖+ ‖δuuub
n(0)‖)+

σ1M
σK

2 − 1

σ2 − 1
.

(14)

Choosing a sufficiently large constant λ such that the fol-
lowing inequality holds when contractive condition ‖(1 −
βgu(ξξξn))‖ < 1 is satisfied,

‖(1− βgu(ξξξn))‖+ σ1(kgu + 1 + αkgu)
1− σ

−(λ−1)K
2

σλ
2 − σ2

≤ ρ < 1,

(15)

then (14) gives

‖uuuf
n+1(k)‖λ ≤ ρ‖uuuf

n(k)‖λ + ε, (16)

where ε = σ1(‖δxxxn(0)‖+‖eeen(0)‖+‖δuuub
n(0)‖)+σ1M

σK
2 −1

σ2−1
.

Equation (16) means

lim
n→∞

‖uuuf
n+1(k)‖λ ≤ ε

1− ρ
(17)

From (12), we can obtain

lim
n→∞

(‖δxxxn(k)‖λ + ‖eeen(k)‖λ + ‖δuuub
n(k)‖λ) ≤

(‖δxxxn(0)‖+ ‖eeen(0)‖+ ‖δuuub
n(0)‖)+

(kgu + 1 + αkgu)
1− σ

−(λ−1)K
2

σλ
2 − σ2

lim
n→∞

‖uuuf
n(k)‖λ+

M
σK

2 − 1

σ2 − 1
.

(18)

Then from (17), (18), we can reach the conclusion of this
theorem. ¤

Remark 1. This theorem reveals that the ILC compo-
nent will play a complementary role in control design, while
the feedback component plays the dominant role.

Remark 2. Note that the learning controller design is
independent of the feedback controller. Hence the closed-
loop characteristics will not be changed by the addition of
the ILC part. Thus, whenever necessary, we can simply
switch off either of the control module and the remaining
one will still work well.

Remark 3. By Theorem 2, ‖uuuf
n(k)‖λ → 0 when the

convergence is obtained. This implies that the control sys-
tem will be dominated by the feedback controller, and the
ILC feedforward is equivalently off.

Remark 4. The underlying idea of this new feedback/
feedforward configuration is to learn and reject the repeat-
able and non-repeatable uncertainties. Learning mecha-
nism is designed to identify all those repeatable components
and leave the remaining unknown iteration-dependent com-
ponents to the feedback control scheme.

Remark 5. The effectiveness, and the advantages, com-
pared with those of [7], of the proposed iterative learning
controller and the ILC add-on to the feedback controller
have been verified through intensive simulations. Here the
results are omited just due to the limitation of paper length.

4 Conclusion
A discrete iterative learning controller with a new

feedforward-feedback configuration in which the iterative
learning control is add-on to the feedback controller is pro-
posed for the discrete-time nonlinear time-varying systems
with initial state error and initial output error. A sys-
tematic approach is developed to analyze the convergence
of the learning system. It is shown that the feedforward
ILC component add-on to the feedback controller does not
change any closed loop characteristics and the feedback
controller still play the dominant role in the combined con-
trol strategy. Furthermore, it is noted that the learning
controller design is completely decoupled from the feed-
back controller. The feedback controller and ILC can work
concurrently as two independent modules without interfer-
ing with each others. Whenever necessary, we can simply
switch off one control module and the remaining one will
still work well. It is a perfect modularized fashion in control
system design.
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