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Decoupling Control of 5 Degrees of Freedom Bearingless

Induction Motors Using α-th Order Inverse System
Method

ZHU Huang-Qiu1 ZHOU Yang1 LI Tian-Bo1 LIU Xian-Xing1

Abstract A 5-degrees-of-freedom bearingless induction motor is a multi-variable, nonlinear and strong-coupled system. In order to
achieve rotor suspension and operation steadily, it is necessary to realize dynamic decoupling control among torque and suspension
forces. In the paper, a method based on α-th order inverse system theory is used to study dynamic decoupling control. Firstly, the
working principles of a 3-degrees-of-freedom magnetic bearing and a 2-degrees-of-freedom bearingless induction motor are analyzed,
the radial-axial force equations of 3-degrees-of-freedom magnetic bearing, the electromagnetic torque equation and radial force
equations of the 2-degrees-of-freedom bearingless induction motor are given, and then the state equations of the 5-degrees-of-freedom
bearingless induction motor are set up. Secondly, the feasibility of decoupling control based on dynamic inverse theory is discussed
in detail, and the state feedback linearization method is used to decouple and linearize the system. Finally, linear control system
techniques are applied to these linearization subsystems to synthesize and simulate. The simulation results have shown that this
kind of control strategy can realize dynamic decoupling control among torque and suspension forces of the 5-degrees-of-freedom
bearingless induction motor, and that the control system has good dynamic and static performance.
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1 Introduction
The technologies of bearingless induction motors are a

great breakthrough in areas of induction motors and mag-
netic bearings. They use comparability of structures be-
tween magnetic bearings and motor. The windings which
produce the suspension forces of the magnetic bearing are
put in the stator slot of the induction motor. Compared
with traditional motors suspended by magnetic bearings,
the bearingless induction motor not only retains the ad-
vantages of no lubrication, no friction and no abrasion, but
also reduces size and weight of motors, because the sus-
pension force windings no longer occupy added axial room.
It changes the structure and drive ways of conventional
motors radically and provides technic methods for special
electric drives. It has shown great scientific research and
application values in fields such as high-speed precision ma-
chining, aeronautics and astronautics, energy sources, traf-
fic, life sciences, etc[1∼3].

The interactional magnetism, which is produced by sus-
pension force windings and armature windings, can let the
rotor suspend. There are nonlinear couplings among the
torque subsystem, flux linkage subsystem and radial force
subsystems. So compared with general motors, the bearing-
less induction motor is a complicated multi-variable non-
linear and strong-coupled system. In order to make the
bearingless induction motor operate steadily, it is neces-
sary to realize nonlinear decoupling control[1,4].

At present, many scholars are carrying out research of
the bearingless induction motor. They realized decoupling
control among torque force and suspension forces, based
on rotor magnetic field oriented or gas magnetic field ori-
ented control method. However, they did not consider time
varying characteristic of parameters, which may influence
performance of vector decoupling control and is difficult to
realize dynamic decoupling control[4]. In the paper, an in-
novative 5-degrees-of-freedom bearingless induction motor
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is proposed, which is composed of a 3-degrees-of-freedom
axial-radial magnetic bearing and a 2-degrees-of-freedom
bearingless induction motor. In order to make the inno-
vative induction motor operate steadily and attain good
dynamic and static performance, it is necessary to control
the radial suspension forces, axial suspension forces and the
torque of the bearingless induction motor independently.
A method based on α-th order inverse system theory is
used to study the dynamic decoupling control. The feasibil-
ity of decoupling control based on dynamic inverse theory
for bearingless induction motor is discussed in detail. The
state feedback linearization method is used for decoupling
control and linearizing the system, and the linear control
techniques are applied to linearization subsystems in syn-
thesis and simulation[5∼6].

2 Decoupling control of bearing-
less induction motor

2.1 α−th order inverse system method
The α-th order inverse system method is to use feedback

linearization method to study the system design theory[5].
The basic idea is: firstly, an α-th order inverse system is
constructed, which can be realized by feedback linearization
method using the inverse model of system object; then the
system is transformed to a linear system, namely pseudo-
linear system; finally, the linearity system theory is used to
synthetize the system.

2.2 Suspension force equations of 3-
degrees-of-freedom magnetic bearings

Fig. 1 shows the structure of a 3-degrees-of-freedom ra-
dial and axial magnetic bearing[7∼9], where Φla, Φlb and
Φlc are the magnet fluxes of the windings in A, B and C
axes; Φlx and Φly are the equivalent magnet fluxes pro-
jected from Φla, Φlb and Φlc to the axes of xl and yl; ila,
ilb and ilc are the currents of the windings in A, B and C
axes; ila and ilb are the currents of equivalent windings in
xl and yl axes. Because of suction produced by Φla, Φlb

and Φlc, the rotor is always on the balance central posi-
tion. If the rotor is moved from the balance position by
the outside interference force, the magnitude and direction
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of ila, ilb and ilc will be changed accordingly, and the
rotor will be returned to the central position.

(a) 3-pole radial magnetic bearing

(b) Magnetic circuit of axial magnetic bearing

Fig. 1 3-degrees-of-freedom radial-axial magnetic bearing

The Maxwell forces Flxand Fly, generated by the com-
posite fluxes of Φla, Φlb and Φlc, are projected to the xl

and yl axes in Fig. 1(a) as follows
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where kir =
µ0 · Fm ·Nr

3(δz/2Sz + δr/3Sr)δr
, kir is the radial current

coefficient; µ0 is vacuum permeability; δr is the length of
radial air gap; Fm is magnetic motive force of the perma-
nent magnet; Sz is the length of axial pole area; Sr is radial
pole area; Nr is the turns of radial force windings.

In Fig. 1(b), Φz is the magnet flux of axial force wind-
ings, Φp is the magnet flux of permanent magnet. When

the rotor is on the balance central position, Φp is sym-
metrical. If the rotor is moved from balance position, the
magnitude and direction of iz will be changed accordingly,
and the rotor will be returned to the central position. The
rotor acted by the axial force Fz is as follows

Fz = kiziz + kzz (2)

where kiz is the axial current coefficient, kiz =
µ0 · Fm ·Nz

(δz/2Sz + δr/3Sr)δz
; kz is axial displacement coefficient,

kz = − µ0 · F 2
m

2(δz/2Sz + δr/3Sr)2δrSz
; δz is axial air gap; Nz is

the turns of axial windings.

2.3 Principle of radial force generation of
2-degrees-of-freedom bearingless in-
duction motors

2-pole radial force windings and 4-pole torque windings
are wound together in stator slots of bearingless induction
motor. The rotation magnetic field and torque are pro-
duced by the 4-pole windings. When the rotation mag-
netic field produced by torque windings and the magnetic
field produced by radial force windings satisfy the follow-
ing three conditions: 1)P4 = P2±1, 2) The two magnetic
fields have the same rotation direction, 3) The currents
which produce the magnetic field have the same frequency,
then the interactive magnetic fields will produce radial sus-
pension forces and make the rotor suspend on the balance
central position[1∼3].

Fig. 2 The principle of producing radial suspension forces of
bearingless motors

Fig. 2 shows the working principle of the bearingless in-
duction motor. When 4-pole torque windings and 2-pole
radial suspension windings are electrified by I4 and I2 as
shown, they will generate in the same direction 4-pole
torque flux linkage ψ4 and 2-pole radial flux linkage ψ2

in air gap 1-1. And the whole flux linkage will be in-
creased to ψ4+ψ2, the electromagnetic suction force will
be increased. While in air gap 2-2, ψ4 and ψ2 have the
opposition direction, and the compound flux linkage will
be decreased to ψ4-ψ2, and electromagnetic suction force
will also be decreased. Therefore, the rotor will be effected
by electromagnetic compound force in the y positive direc-
tion, the rotor will be moved up. If the direction of current
in suspension force windings is changed, the radial electro-
magnetic compound force in y negative direction will be
generated. In the same way, electromagnetic compound
force will be produced in x direction. So the rotor can
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be suspended steadily in the balance central position by
adjusting the magnitude and direction of the currents in
radial suspension force windings.

2.4 Analysis of radial force on 2-degrees-
of-freedom bearingless induction mo-
tors

The electromagnetic couplings of the bearingless induc-
tion motor are very complex, because there are couplings
between the 2-pole windings and 4-pole windings, and there
are couplings between the windings themselves. In order
to analyse easily, 2-phase windings in rotation coordinate,
which has been changed from 3-phase windings in static
coordinate through C3/2 and Cr/s transform, is studied.
Because 2-phase coordinate of the rotation coordinate are
plumb each other, the mutual inductance value among 4-
pole windings or 2-pole windings is 0, the self-inductance
L4s of torque windings and the self-inductance L2s of radial
force windings are constants. The inductance matrix L of
the motor can be written as

L =

2
664

L4s 0 −Mα Mβ
0 L4s Mβ Mα
−Mα Mβ L2s 0
Mβ Mα 0 L2s

3
775 (3)

where α and β are the rotor radial displacement in the x-
and y-directions; M is the mutual inductance coefficient of
4-pole windings and 2-pole windings; the subscript expres-
sion s is the component in the stator side.

According to the relationship of energy conversion, the
magnetic energy stored in the windings can be written as

(
Wm = 1

2
ITLI

I = [id4s iq4s id2s iq2s]
T (4)

where id4s and iq4s are the 4-pole windings current com-
ponents in d-q coordinate, respectively; id2s and iq2s are
the 2-pole windings current components in d-q coordinate,
respectively.

Neglecting magnetic saturation, the radial forces Frx and
Fry in the x- and y-directions can be written as
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2.5 Electromagnetic torque of bearingless
induction motors

Because the magnetic field produced by radial force
windings is much smaller than the magnetic field produced
by torque windings, by neglecting magnetic field produced
by the radial force windings, the rotor flux linkage satisfies
the following equations.

(
ψ̇dr = − 1

Tr
ψdr − ωrψq4s + Lm4r

Tr
id4s

ψ̇qr = − 1
Tr

ψqr + ωrψd4s + Lm4r
Tr

iq4s
(6)

The torque equation for bearingless induction motor is

Te = p4
Lm4r

Lr
(ψdriq4s − ψqrid4s) (7)

where ψdr and ψqr are the components of rotor flux link-
age in d-q coordinate, respectively; ωr is the speed of the
rotor; ψd4s and ψq4s are the components of stator torque

flux linkage in d-q coordinate, respectively; Tr is the time
constant; p4 is the pole-pair number of torque windings;
Lm4r is the mutual inductance between torque windings
and rotor.

2.6 State equations of the 5-degrees-of-
freedom bearingless induction motor

The subscript “l” denotes the 3-degrees-of-freedom mag-
netic bearings, the subscript “r” denotes the 2-degrees-of-
freedom bearingless motor. After the analysis of forces
acting on the rotor, the system motion equations of the
5-degrees-of-freedom bearingless induction motor are as
follows[10] 8

>>>>>><
>>>>>>:

mẍl + Flx = flx

mÿl + Fly = fly

mz̈ + Fz = fz

mẍr + Frx = frx

mÿr + Fry = fry
J
p4

ω̇r = Te − TL

(8)

where m is the mass of the rotor; flx, fly, fz, frx and
fry are the external disturbance forces in the directions of
xl, yl, z, xr and yr axes, respectively; J is the moment of
inertia of the rotor; ωr is the mechanical rotational angular
speed of the rotor; Te and TL are the electromagnetic torque
and the load torque, respectively; Fz is the force in the z-
direction.

State variables are chosen as

X = [x1, x2, · · ·, x12, x13]
T =

[xl, yl, z, xr, yr, ẋl, ẏl, ż, ẋr, ẏr, ωr, ψdr, ψqr]
T (9)

Input variables are chosen as

U = [u1, u2, · · ·, u6, u7]
T = [ilx, ily, iz, id4s, iq4s, id2s, iq2s]

T

(10)
Output variables are chosen as

Y = [y1, y2, y3, y4, y5, y6, y7]
T = [xl, yl, z, xr, yr, ωr, ψr]

T

(11)
From (1)∼(2) and (5) ∼ (10), the state equations of the

system are written as

8
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ẋ1 = x6

ẋ2 = x7

ẋ3 = x8

ẋ4 = x9

ẋ5 = x10

ẋ6 = 1
m

(− 3
2
kiru1 + flx)

ẋ7 = 1
m

(− 3
2
kiru2 + fly)

ẋ8 = 1
m

(−kizu3 − kzx3 + fz)

and
8
>>>>>>>><
>>>>>>>>:

ẋ9 = M
m

(u4u6 − u5u7) + 1
m

frx

ẋ10 = −M
m

(u5u6 + u4u7) + 1
m

fry

ẋ11 =
P2
4 Lm4r

JLr
(x12u5 − x13u4)− P4

J
TL

ẋ12 = − 1
Tr

x12 − x11x13 + Lm4r
Tr

u4

ẋ13 = − 1
Tr

x13 + x11x12 + Lm4r
Tr

u5

(12)
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Output equations are written as

Y = [ y1 y2 y3 y4 y5 y6 y7 ]T

= [ xl yl z xr yr ωr ψr ]T

= [ x1 x2 x3 x4 x5 x11

p
x2

12 + x2
13

]T

(13)

It can be seen from (10) ∼ (13) that the state equation
of the 5-degrees-of-freedom bearingless induction motor is a
7-input and 7-output nonlinear and strong-coupled MIMO
system.

2.7 Analysis of linearization decoupling
control based on inverse system the-
ory

From (12) and (13), we can obtain

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ẏ1 = ẋ1 = x6
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m
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ẏ7 = ψ̇r = − 1
Tr

ψr + Lm4r
Tr

1
ψr

(u4x12 + u5x13)

(14)
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ẋ8 = 1
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ẋ9 = M
m

(u4u6 − u5u7) + 1
m

frx

ẋ10 = −M
m
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fry
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P2
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ψ̇r = − 1
Tr

ψr + Lm4r
Tr
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(15)

Take the derivatives of A(U ): ∂
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. So

rank
ˆ

∂A
∂U

˜
=7, and the matrix ∂A

∂U
is nonsingular. The rela-

tive orders of the system are as follows

α = (α1, α2, α3, α4, α5, α6, α7) = (2, 2, 2, 2, 2, 1, 1)

It is easy to obtain that
rP

i=1

αi = 12. And the order of

state equation of the system is 13, so the system is invert-
ible. The state feedback linearization method is adopted.
Now suppose

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

u1 = φ1

u2 = φ2

u3 = φ3

u4u6 − u5u7 = φ4

u5u6 + u4u7 = φ5

x12u5 − x13u4 = φ6

1
ψr

(u4x12 + u5x13) = φ7

(16)

From (16), the formulas of state feedback arithmetic are
as follows

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

u1 = φ1

u2 = φ2

u3 = φ3

u4 = −x13
ψ2

r
φ6 + x12

ψr
φ7

u5 = x12
ψ2

r
φ6 + x13

ψr
φ7

u6 = u4
u2
4+u2

5
φ4 + u5

u2
4+u2

5
φ5

u7 = − u5
u2
4+u2

5
φ4 + u4

u2
4+u2

5
φ5

(17)

After adopting the state feedback matrix described as
(17), the system will be turned into linear system expressed
in (18) without couplings. Substituting flx = ks · xl, fly =
ks · yl, fz = ks · z, frx = ks · xr and fry = ks · yr into
(14), and combining with (13) and (15), the system will be
transformed into linear system as follows

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ẍl = − 3
2m

kirφ1 + ks
m

xl

ÿl = − 3
2m

kirφ2 + ks
m

yl

z̈ = − 1
m

kizφ3 − 1
m

kzx3 + ks
m

z

ẍr = M
m

φ4 + ks
m

xr

ÿr = −M
m

φ5 + ks
m

yr

ω̇r =
P2
4 Lm4r

JLr
φ6 − P4

J
TL

ψ̇r = − 1
Tr

ψr + Lm4r
Tr

φ7

(18)

3 Synthetizing system
3.1 Synthetizing position of rotor system

The normalized linear system described in (18) can be
synthesized using the linear system theory. The former five
rows of (18) are the xl, yl, z, xr and yr displacement sub-
systems of the 5-degrees-of-freedom bearingless induction
motor which belongs to the second-order integral system.
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For example, the transfer function of the displacement sys-
tem of the rotor in the xr-direction is as follows

Gk(s) = x(s)/φ4(s) = M/m · s2 (19)

The characteristic equation of the system is as follows

s2 + 2ξωns + ω2
n = 0 (20)

The parameters ωnand ξ are chosenas ωn=800 rad/s,

ξ=
√

2
‹
2, and the transfer function of state feedback is as

follows

a0s + a1 = 2ξωnm/M · s + ω2
nm/M (21)

The closed loop transfer function of the system can be
obtained as follows

G(s) =
6.4× 105

s2 + 1132s + 6.4× 105
(22)

The system overshoot σ is 4.3%, the adjusting time ts is
7.06 ms.

3.2 Synthetizing speed system
The sixth row of (18) is the subsystem of the speed ωr,

which belongs to the first-order integral system. The trans-
fer function of the speed subsystem can be chosen as

Gk(s) =
ωr(s)

φ6(s)
=

P 2
4 Lm4r

JLr
· 1

s
(23)

The speed adjuster can be chosen as PI adjuster. The
transfer function of the system is

Gc (S) =
k1 (τs + 1)

τs
(24)

According to requirement of the design adjuster theory,
Gc(s) can be chosen as follows

Gc (s) =
2JLr (τs + 1)

P 2
4 Lm4rτ2s

(25)

The closed loop transfer function of the rotate speed sys-
tem is

Φ (s) =
2τ−2 (τs + 1)

s2 + 2τ−1s + 2τ−2
(26)

4 Simulation of control system
The control strategy can be verified by computer simu-

lation using the parameters of the designed prototype ma-
chine. The parameters of the system are as follows: The
stator inductance Ls is 16.31×10−2 H; the rotor inductance
Lr is 16.778×10−2 H; the mutual inductance between stator
and rotor Lm4r is 15.856×10−2 H; the mutual inductance
coefficient between stator torque winding and radial force
winding M is 78.2 H/m; the rotor resistance r is 11.48 Ω;
the time constant of the rotor Tr is 1.46×10−2 s; the mass
of rotor m is 2.85 kg; the moment of inertia J is 0.00769
kg·m2; the pole-pair number of torque windings P4 is 2; the
pole-pair number of suspension force windings P2 is 3. So
we can obtain the followings
1) The state feedback parameters of xr position system are

a0 = 2ξωnm/M = 41.23, a1 = ω2
nm/M = 23324.81

2) The adjust parameter of torque system

From (24) and (25),

k1 =
2JLr

P 2
z Lm4rτ

= 0.041, where τ is 0.1.

So from (26), we can obtain

Φ (s) =
2τ−2 (τs + 1)

s2 + 2τ−1s + 2τ−2
=

20s + 200

s2 + 20s + 200

(a) Start up displacement subsystem curve in the x-direction

(b) The trajectory of the mass center of the rotor

(c) Performance curve of speed of the bearingless induction
motor

Fig. 3 Simulation results
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4.1 Process of rotor rising
When the initialization of x is –0.3 mm, the displacement

curve starting up in x-direction is shown in Fig. 3(a). The
simulation results have shown that the steady-state error
of system approaches to 0, the overshoot of system is very
small and adjusting time is approach to 0.01s. When the
initialization of x is –0.3 mm and y is –0.4 mm, the trajec-
tory of mass center of rotor is shown in Fig. 3(b). The rotor
position subsystem of decoupling control for bearingless in-
duction motor has good dynamic and static performance.

4.2 System of speed
The step response of the speed subsystem of bearingless

induction motor is shown in Fig. 3(c). The expectation
speed is 6 000 r/min, and the simulation results have shown
that the overshoot of the system is less than 5% and the
adjusting time is less than 0.5s, so the speed subsystem has
good performance.

5 Conclusion
1) In this paper, the decoupling control arithmetic based

on α-th order inverse system theory has been used success-
fully in realizing dynamic decoupling control among radial
displacement subsystems and torque (speed) subsystem of
the 5-degrees-of-freedom bearingless induction motor.

2) Dynamic decoupling control method is realized that
not only each subsystem has no coupling but also all subsys-
tems have been linearized, therefore the system we design
attains the ideal performance easily.

3) The simulation results have shown that this kind of
control strategy can realize dynamic decoupling control
among suspension forces and torque of the 5-degrees-of-
freedom bearingless induction motor. The rotor can sus-
pend steadily, the speed and 5-degrees-of-freedom displace-
ments can be controlled independently. The whole system
has good dynamic and static performance.
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