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Guaranteed Cost Controller Design of Networked
Control Systems with State Delay
XIE Jin-Song1 FAN Bing-Quan1 Young Sam Lee 2 YANG Jin3

Abstract This paper is concerned with the state-feedback guaranteed cost controller design for a class of networked control systems
(NCSs) with state-delay. A new model of the NCSs is provided under consideration of the network-induced delay. A sufficient
condition for the existence of a guaranteed cost controller for NCSs is presented by a set of linear matrix inequalities(LMIs). A
method, which can transform non-convex to the convex, is applied. Accordingly, a numerical algorithm is proposed to obtain the
lower bound. Theoretical analysis through an example shows the effectiveness of the method.
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1 Introduction

The networked control systems(NCSs) have recently
been studied by more and more researchers since their low
cost, reduced weight and power requirements, simple in-
stallation and maintenance and high reliability[1,2] . In an
NCS, one of the important issues to treat is the effect of
the network-induced delay on the system performance. For
the NCSs with different scheduling protocols, the network-
induced delay may be constant, time-varying, or even ran-
dom variable[3].

The guaranteed cost control of uncertain systems was
first put forward by [4] and studied by a lot of researchers,
which is to design a controller to robustly stabilize the un-
certain system and guarantee an adequate level of perfor-
mance. The guaranteed cost control approach has recently
been extended to the uncertain time-delay systems, for the
state feedback cases, see [5∼7]; for the output feedback
case, see [8].

In this paper, the author′s intention is to design a guar-
anteed cost controller based on the network delay for a
class of uncertain time-delay. Sufficient condition for the
existence of a guaranteed cost state-feedback controller is
established in terms of matrix inequalities. At the same
time, the maximum allowable value τmax of the network-
induced and guaranteed cost bound are obtained and the
guaranteed cost control strategy is proven by a numerical
example.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the problem formulation. In Section 3,
details of the modeling of networked control systems are
discussed. Section 4 obtains the guaranteed cost controller
design and illuminates the method which switches a non-
convex problem to a convex. Section 5 introduces a numer-
ical example. Section 6 presents conclusions.

2 Problem formulation

Consider a class of linear uncertain system with time-
delay in the state described by the following equations

8<
:

x′(t) = [A + ∆A]x(t) + [Ad + ∆Ad]x(t − d)+
[B + ∆B]u(t)

x(t) = ϕ(t), t ∈ [−d, 0]
(1)
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where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
input vector, A,Ad ∈ Rn×n and B ∈ Rn×m are known con-
stant real matrices, ∆A,∆Ad and ∆B are matrix-valued
functions of appropriate dimension parameter uncertain-
ties in the system model. ϕ(t) is a given continuous vector-
valued initial function and subsection differential on [−d, 0].
The parameter uncertainties considered are assumed to be
norm bounded and satisfy

[∆A ∆Ad ∆B] = DF (t)[E Ed Eb] (2)

where D, E, Ed, Eb are known constant real matrices of ap-
propriate dimensions that represent the structure of uncer-
tainties, and F (t) ∈ Ri×j is an uncertain matrix function
with Lebesgue measurable elements and satisfies

FT(t)F (t) ≤ I (3)

in which I denotes the identity matrix of appropriate di-
mension. Associated with system (1) is the cost function

J =

Z ∞

0

[xT(t)Qx(t) + uT(t)Ru(t)]dt (4)

where Q and R are given positive-definite symmetric ma-
trices.

Definition[9]. For the uncertain system (1), if there
exist a control law u∗(t) and a positive scalar J∗ such that
for all admissible uncertainties the closed-loop system is
stable and the closed-loop value of the cost function (4)
satisfies J ≤ J∗, then J∗ is said to be a guaranteed cost
and u∗(t) is said to be a guaranteed cost control law for the
uncertain system (1).

The objective of this paper is to develop a procedure
for designing a memoryless state feedback guaranteed cost
control law

u(t) = Kx(t) (5)

for the linear uncertain time-delay system (1).

3 Modeling of networked con-
trol systems

In an NCS, suppose that the sensor is clock-driven, the
controller and actuator are event-driven and the data is
transmitted with a single-packet. Then the real input u(t)
realized through zero-order hold in (1) is a piecewise con-
stant function. Furthermore, if we consider the effect of
the network-induced delay and network packet dropout on
the NCSs, then the real control system (1) with (5) can be
rewritten as8<

:
x′(t) = [A + ∆A]x(t) + [Ad + ∆Ad]x(t − d)+

[B + ∆B]u(t), t ∈ [ikh + τk, ik+1h + τk+1)
u(t+) = Kx(t − τk), t ∈ {ikh + τk, · · · }

(6)
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where h is the sampling period, ik(k = 1, 2, · · · ) are some
integers and {i1, i2, · · · } ⊆ {1, 2, · · · }, τk is the time de-
lay, which denotes the time from the instant ikh when the
sensor nodes sample sensor data from a plant to the in-
stant when actuators transfer data to the plant. Obviously,S∞

k=1[ikh + τk, ik+1h + τk+1) = [0,∞). According to (2),
system (6) can be rewritten as the following equivalent form

x′(t) = [A + DF (t)E]x(t) + [Ad + DF (t)Ed]x(t − d)+

[B + DF (t)Eb]Kx(ikh), t ∈ [ikh + τk, ik+1h + τk+1)
(7)

and (4) can be rewritten as

J =

Z ∞

0

xT(t)Qx(t)dt +

∞X
k=1

Z ik+1h+τk+1

ikh+τk

xT(ikh)KTRKx(ikh)dt (8)

4 Main results

The following Lemmas will be used.
Lemma 1. For any vectors a, b and positive-definite

matrix X, there exists

±2aTb ≤ aTX−1a + bTXb

Lemma 2. Given appropriate dimension matrices D, E
and symmetric Y , the matrix inequality

Y + DFE + ETFTDT < 0

holds for all F satisfying FTF ≤ I if and only if there exists
a constant ε > 0 such that

Y + εDDT + ε−1ETE < 0

First we present a sufficient condition for the existence
of memoryless state feedback guaranteed cost control laws
for an uncertain time-delay system.

Theorem 1. u(t) = Kx(t), (K = Y X−T) is a guar-
anteed cost controller if there exist symmetric positive-

definite matrices �P > 0, �S > 0, �T > 0, and appropriate

dimension matrices X, Y, �Ni(i = 1, 2, 3, 4), and a scalar
ε > 0 for any given scalars τ, ρi(i = 2, 3, 4), and matri-
ces Q > 0, R > 0 such that (9) holds. At the same time
the guaranteed cost J∗ satisfies (11).

(ik+1 − ik)h + τk+1 ≤ τ, k = 1, 2, · · · (10)

J ≤ ϕT(0)X−1 �PX−Tϕ(0)+Z 0

−d

ϕT(α)X−1�SX−Tϕ(α)dα+

Z τ

0

Z 0

−β

ϕ′T(α)X−1 �TX−Tϕ′(α)dαdβ = J∗ (11)

where8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Ω11 = �S + �N1 + �N1
T − AXT − XAT + εDDT

Ω21 = �N2 − XAT
d − ρ2AXT + ερ2DDT

Ω22 = −�S − ρ2XAT
d − ρ2AdXT + ερ2

2DDT

Ω31 = − �N1
T

+ �N3 − Y TBT − ρ3AXT + ερ3DDT

Ω32 = − �N2
T − ρ2Y

TBT − ρ3AdXT + ερ2ρ3DDT

Ω33 = − �N3 − �N3
T − ρ3BY − ρ3Y

TBT + ερ2
3DDT

Ω41 = �N4 + X − ρ4AXT + �P + ερ4DDT

Ω42 = ρ2X − ρ4AdX
T + ερ2ρ4DDT

Ω43 = − �N4 + ρ3X − ρ4BY + ερ3ρ4DDT

Ω44 = τ �T + ρ4X + ρ4X
T + ερ2

4DDT

Proof. Construct a Lyapunov functional as

V (t) = xT(t)Px(t) +

Z t

−d

xT(α)Sx(α)dα+

Z τ

0

Z t

−β

x′T(α)Tx′(α)dαdβ (12)

where P > 0, S > 0, T > 0.
Since x(t) − x(ikh) − R t

ikh
x′(α)dα = 0 and by (7), one

can see that any arbitrary matrices Ni, Mi(i = 1, 2, 3, 4) of
appropriate dimensions satisfy

2[xT(t)N1 + xT(t − d)N2 + xT(ikh)N3 + x′T(t)N4]×

[x(t) − x(ikh) −
Z t

ikh

x′(α)dα] = 0

(13)

2[xT(t)M1 + xT(t − d)M2 + xT(ikh)M3 + x′T(t)M4]×
[−Āx(t) − Ādx(ikh) − B̄Kx(ikh) + x′(t)] = 0

(14)

where Ā = A + DF (t)E, Ād = Ad + DF (t)Ed, B̄ =
B + DF (t)Eb.

Taking the time derivative of V (t) for t ∈ [ikh +
τk, ik+1h + τk+1), and using (13) and (14) yields

V ′(t) = 2xT(t)Px′(t) + xT(t)Sx(t) + τx′T(t)Tx′(t)−

xT(t − d)Sx(t − d) −
Z t

−τ

x′T(α)Tx′(α)dα+

2[xT(t)N1 + xT(t − d)N2 + xT(ikh)N3 + x′T(t)N4]×

[x(t) − x(ikh) −
Z t

ikh

x′(α)dα]+

2[xT(t)M1 + xT(t − d)M2 + xT(ikh)M3 + x′T(t)M4]×
[−Āx(t) − Ādx(ikh) − B̄Kx(ikh) + x′(t)]

(15)

Ω =

2
66666666664

Ω11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Ω21 Ω22 ∗ ∗ ∗ ∗ ∗ ∗
Ω31 Ω32 Ω33 ∗ ∗ ∗ ∗ ∗
Ω41 Ω42 Ω43 Ω44 ∗ ∗ ∗ ∗

τ �N1
T

τ �N2
T

τ �N3
T

τ �N4
T −τ �T ∗ ∗ ∗

0 0 Y 0 0 −R−1 ∗ ∗
XT 0 0 0 0 0 −Q−1 ∗

EXT EdXT EbX
T 0 0 0 0 −εI

3
77777777775

< 0 (9)
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From (10) it can be seen that when
t ∈ [ikh + τk, ik+1h + τk+1)

−
Z t

t−τ

x′(α)Tx′(α)dα ≤ −
Z t

ikh

x′(α)Tx′(α)dα (16)

Using Lemma 1, we can show that

− 2[xT(t)N1 + xT(t − d)N2 + xT(ikh)N3 + x′T(t)N4]×Z t

ikh

x′(α)dα ≤ τeT(t)NT−1NTe(t) +

Z t

ikh

x′T(α)Tx′(α)dα

(17)

where

eT(t) = [xT(t) xT(t − d) xT(ikh) x′T(t)]

NT = [NT
1 NT

2 NT
3 NT

4 ]

Combining (15), (16) and (17), we obtain

V ′(t) ≤ eT(t)Ω̄e(t) − xT(t)Qx(t)−
xT(ikh)KTRKx(ikh)

t ∈ [ikh + τk, ik+1h + τk+1) (18)

where

Ω̄ =

2
6664

Ω̄11 ∗ ∗ ∗ ∗
Ω̄21 Ω̄22 ∗ ∗ ∗
Ω̄31 Ω̄32 Ω̄33 ∗ ∗
Ω̄41 Ω̄42 Ω̄43 Ω̄44 ∗
τNT

1 τNT
2 τNT

3 τNT
4 −τT

3
7775

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Ω̄11 = S + N1 + NT
1 − M1Ā − ĀTMT

1 + Q

Ω̄21 = N2 − M2Ā − Ād
T
MT

1

Ω̄22 = −S − M2Ād − Ād
T
MT

2

Ω̄31 = −NT
1 + N3 − KTB̄TMT

1 − M3Ā
Ω̄32 = −NT

2 − KTB̄TMT
2 − M3Ād

Ω̄33 = −N3 − NT
3 − M3B̄K − KTB̄TMT

3 + KTRK
Ω̄41 = N4 + MT

1 − M4Ā + P
Ω̄42 = MT

2 − M4Ād

Ω̄43 = −N4 + MT
3 − M4B̄K

Ω̄44 = τT + M4 + MT
4

So if Ω̄ < 0, then (18) implies V ′(t) < 0.

Using Lemma 2, we obtain

Ω̄ = Ȳ + MT
d FMe + MT

e FMd < 0

⇔ Ȳ + εMT
d Md + ε−1MT

e Me < 0 (19)

where

Ȳ =

2
6664

Ȳ11 ∗ ∗ ∗ ∗
Ȳ21 Ȳ22 ∗ ∗ ∗
Ȳ31 Ȳ32 Ȳ33 ∗ ∗
Ȳ41 Ȳ42 Ȳ43 Ȳ44 ∗

τNT
1 τNT

2 τNT
3 τNT

4 −τT

3
7775

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

Ȳ11 = S + N1 + NT
1 − M1A − ATMT

1 + Q
Ȳ21 = N2 − M2A − AT

d MT
1

Ȳ22 = −S − M2Ad − AT
d MT

2

Ȳ31 = −NT
1 + N3 − KTBTMT

1 − M3A
Ȳ32 = −NT

2 − KTBTMT
2 − M3Ad

Ȳ33 = −N3 − NT
3 − M3BK − KTBTMT

3 + KTRK
Ȳ41 = N4 + MT

1 − M4A + P
Ȳ42 = MT

2 − M4Ad

Ȳ43 = −N4 + MT
3 − M4BK

Ȳ44 = τT + M4 + MT
4

Md = −[(M1D)T (M2D)T (M3D)T (M4D)T 0]
Me = [E Ed EbK 0 0]

In the sequel, by using Schur complement and defining:
M = M1, M2 = ρ2M1, M3 = ρ3M1, M4 = ρ4M1, X =

M−1, Y = KXT, �P = XPXT, �S = XSXT, �T =

XTXT, �Ni = XNiX
T(i = 1, 2, 3, 4), and pre-, post-

multiplying both sides with diag(X X X X X I I I)
and its transpose, we have (19) ⇔ Ω < 0, thus proof of
V ′(t) < 0.

From (18) we can see

xT(t)Qx(t) + xT(ikh)KTRKx(ikh) < −V ′(t) (20)

integrating (20) from ikh + τk to ik+1h + τk+1, and usingS∞
k=1[ikh + τk, ik+1h + τk+1) = [0,∞), V (∞) = 0 then we

get the (11). Thus we complete the proof of Theorem 1. �
Given d, in order to obtain a controller u(t) =

Y X−Tx(t), which achieves the least guaranteed cost value
J∗, we have to solve the following minimization problem

Minimize J1 + J2 + J3 subject to (9) (21)

where

J1 = ϕT(0)X−1 �PX−Tϕ(0)

J2 =

Z 0

−d

ϕT(α)X−1 �SX−Tϕ(α)dα

J3 =

Z τ

0

Z 0

−β

ϕ′T(α)X−1 �TX−Tϕ′(α)dαdβ (22)

However, it is noted that the terms J1, J2, J3 are not

convex functions of X and �P , �S, �T . As a result, unfortu-
nately, we can not find in general the global minimum of
the above minimization problem using a convex optimiza-
tion algorithm[10]. However if we can afford more compu-
tational efforts, we can obtain a guaranteed cost controller
achieving a suboptimal guaranteed cost, say J∗

so, using an
iterative algorithm presented in [11].

In the sequel, let us derive the upper bounds on the cost
functions J1, J2, J3. Before starting the problem, let us de-
fine matrix values Π1,Π2,Π3, such that

Π1 = ϕ(0)ϕT(0)

Π2 =

Z 0

−d

ϕ(α)ϕT(α)dα

Π3 =

Z τ

0

Z 0

−β

ϕ′(α)ϕ′T(α)dαdβ (23)

To derive the upper bound on J1, let us introduce a new
variable Λ = ΛT such that

X−1 �PX−T < Λ (24)
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By Schur complement, (24) is equivalent to

» −Λ X−1

X−T −�P−1

–
< 0 (25)

By introducing new values M, P̄ , the condition (25) can
be replaced by» −Λ M

MT −P̄

–
< 0, M = X−1, P̄ = �P−1 (26)

Assuming (26), we can conclude that the following in-
equality holds

ϕT(0)X−1 �PX−Tϕ(0) < tr(Π1Λ) (27)

To derive the upper bound on J2, let us introduce a new
variable Π = ΠT such that

X−1 �SX−T < Π (28)

By Schur complement, (28) is equivalent to

» −Π X−1

X−T −�S−1

–
< 0 (29)

By introducing a new value S̄, the condition (29) can be
replaced by » −Π M

MT −S̄

–
< 0, S̄ = �S−1 (30)

Assuming (30), we can conclude that the following in-
equality holds

Z 0

−d

ϕT(α)X−1 �SX−Tϕ(α)dα < tr(Π2Π ) (31)

To derive the upper bound on J3, let us introduce a new
variable Ξ = ΞT such that

X−1 �TX−T < Ξ (32)

By Schur complement, (32) is equivalent to

» −Ξ X−1

X−T −�T−1

–
< 0 (33)

By introducing a new value T̄ , the condition (33) can be
replaced by » −Ξ M

MT −T̄

–
< 0, T̄ = �T−1 (34)

Assuming (34), we can conclude that the following in-
equality holds

Z τ

0

Z 0

−β

ϕ′T(α)X−1 �TX−Tϕ′(α)dαdβ < tr(Π3Ξ ) (35)

For some constant J , assume

tr(Π1Λ) + tr(Π2Π ) + tr(Π3Ξ ) < J (36)

Combining these facts, we can construct a feasibility
problem as follows

Find �P , �S, �T , X, P̄ , S̄, T̄ , M,Λ, Π ,Ξ , Y, �Ni(i = 1, 2, 3, 4), ε

Subject to �P > 0, �S > 0, �T > 0, (9)(26)(30)(34)(36)
(37)

Given d and J , if the above problem has a solution, we
can say that there exists a controller u(t) = Y X−Tx(t)
which guarantees the cost function (4) is less than J∗.
Note that the conditions (26) (30) (34) still include non-

linear condition, eg. P̄ = �P−1. However, using the idea
in a cone complementary linearization algorithm[11] , the
above feasibility problem can be solved iteratively. Now,
we suggest the following nonlinear minimization problem
involving LMI conditions instead of the original non-convex
minimization problem in (21)

Minimize tr(�PP̄ + �SS̄ + �T T̄ + XM)

Subject to �P > 0, �S > 0, �T > 0, (9)(36)» −Λ M
MT −P̄

–
< 0,

» −Π M
MT −S̄

–
< 0

» −Ξ M
MT −T̄

–
< 0,

»
�P I
I P̄

–
≥ 0

»
�S I
I S̄

–
≥ 0,

»
�T I
I T̄

–
≥ 0

»
X I
I M

–
≥ 0 (38)

If the solution of the above minimization problem is 4n,

that is, tr(�P P̄ + �SS̄ + �T T̄ + XM) = 4n[11], we can say
from Theorem1 that the system (6) with the controller
u(t) = Y X−Tx(t) is uniformly asymptotically stable with
the guaranteed cost J∗. Although it is still impossible to
always find the globally optimal solution, the proposed
nonlinear optimization problem is easier to solve than the
original non-convex minimization problem in (21). Actu-
ally, utilizing the linearization method in [11], we can easily
find a suboptimal minimum of the guaranteed cost using
an iterative algorithm presented in the following.

Algorithm.
Step 1. Choose a sufficiently large initial J such that

there exists a feasible solution in (38). Set Jso = J .

Step 2. Find a feasible set ( �P0, P̄0, �S0, S̄0, �T0, T̄0, X0,
M0) satisfying LMIs in (38). Set k=1.

Step 3. Solve the following LMI problem for the vari-

ables (�P , P̄ , �S, S̄, �T , T̄ , X, M):

Minimize tr( �PkP̄ + �SkS̄ + �TkT̄ + XkM + �PP̄k + �SS̄k +
�T T̄k + XMk) subject to LMIs in (38).

Set �Pk+1 = �P , �Sk+1 = �S, �Tk+1 = �T , Xk+1 = X, P̄k+1 =
P̄ , S̄k+1 = S̄, T̄k+1 = T̄ , Mk+1 = M .

Step 4. If the condition (24), (28) and (32) are all satis-
fied, then set Jso = J and return to Step 2 after decreasing
J to some extent. If the condition (24), (28) and (32) are
not satisfied within a specified number of iterations, say
kmax, then exit. Otherwise set k = k + 1 and go to Step 3.

5 Numerical example

Example. Consider the following uncertain time-delay
system:

x′(t) =

»
1 + 0.33F (t) 0.42F (t)

0.53F (t) −2 + 0.67F (t)

–
x(t)+

»
0.5 0.32
0 −0.5

–
x(t − d) +

»
0.47
0.75

–
u(t)

where d = 1, x1(t) = 3et+1 − 1, x2(t) = 0, for t ∈ [−1, 0]
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and F 2(t) ≤ 1. We consider the cost function (11), set
Q = 0.5I, R = 0.1, ρ2 = 2, ρ3 = 3, ρ4 = 4 and use the
algorithm in the above, then obtain Table 1 with d given.

From Table 1: when d declines a little, the maximum al-
lowable value τmax of the network-induced increases a lot,
even so, the system will be asymptotically stable as before.
Accordingly, the value Jso drops a lot. Of course, we can
give Q, R, ρ2, ρ3, ρ4 other values, relative τmax, Jso, K will
be obtained respectively.

Table 1 When d given then obtaining τmax, Jso, K

d τmax Jso K

1 0.15 469.98 [-2.690 -1.096]

0.5 0.45 126.63 [-1.295 0.120]

6 Conclusion

In this paper, we firstly model NCSs with network delay
for a class of uncertain time-delay systems. Based on the
model, a guaranteed cost controller design is presented and
a sufficient condition for the existence of a guaranteed cost
state-feedback for a class of uncertain time-delay systems
is given and an algorithm involving a convex optimization
is applied to construct a controller with a suboptimal guar-
anteed cost such that the system can be stabilized for all
admissible uncertainties. At the same time a simulated ex-
ample is given to show the effectiveness of the algorithm.
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