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Perceptual Contrast-Based Image Fusion:
A Variational Approach

WANG Chao1 YE Zhong-Fu1, 2

Abstract Local contrast, or variation, plays an important role in image fusion which is mainly to preserve the important in-
formation from the source images to the fusion result. Weber′s law tells us that the same variation under different backgrounds
will cause different perceptual feelings, thus an ideal image processor has to take into account the effects of vision psychology and
psychophysics. This paper considers the property of human visual system (HVS) and transfers the quantitative perceptual variations
from each source image to the result. Using just-noticeable-difference (JND) as measurement, the multiband image′s perceptual
contrast is obtained as a target. We construct a functional extremum problem to find a single band image, or fusion result, which
has the closest perceptual contrast to the target one. Via the variational approach, the Euler-Lagrange equation is derived, and a
gradient descent iteration is employed. Experimental results show that this method is perceptually good.

Key words Image fusion, variational approach, perceptual contrast, Weber′s law, human visual system (HVS), partial differential
equations (PDEs)

1 Introduction

The purpose of image fusion is to extract and synthesize
information from multiple images in order to produce a
more accurate, complete and reliable composite image of
the same scene or target, so that the fused image is more
suitable for human or machine interpretation. It is useful
for analysis, detection, recognition and tracing of targets of
interest.

Image fusion can be performed in three stages, named as
pixel-level, feature-level and decision-level respectively. In
this paper we only discuss pixel-level image fusion, and we
think all the input channels have been well registered.

Up to now, plenty of image fusion algorithms are based
on multiscale decomposition, see [1] for a review. Among
these decomposition methods, discrete wavelet transform
(DWT) is probably the most typical one[2]. Recently, So-
colinsky et al proposed a novel variational paradigm for
image fusion, which has shown a promising future[3∼6]. In
Socolinsky′s framework, variation of the intensity is the
only thing to consider. However, the same variation under
different backgrounds will cause different perceptions[7], as
the Weber′s law tells us. The human visual system (HVS)
is a necessary ingredient to be taken into consideration for
all image processing tasks, including image fusion.

In the next section, the previous work will be briefly
reviewed, including wavelet fusion method, Socolinsky′s
method and the HVS. In Section 3, we will generalize
Socolinsky′s framework by Weber′s law, present the cor-
responding model based on perceptual contrast, and give
the discretization for the proposed scheme. The experi-
ments are presented in Section 4. In the last section, we
give some concluding remarks and the future directions for
study.

2 Previous work and our moti-
vation

2.1 Wavelet fusion framework[2]
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Fig. 1 DWT fusion framework[2]

Here, we will not rewrite the wavelet transform theory,
but only give the existing fusion scheme based on DWT[2].
The typical diagram of DWT based image fusion can be
generalized as Fig.1. The “selection rule” is the key issue
of the whole task. It embodies what feature our choice
is, or what we think to be the important information that
should be preserved in the fused image. Different DWT-
based algorithms often use different rules.

As far as the smooth component (LL) of the coarsest

level DWT coefficient is concerned, Li et al[2] simply used
the average value of each source image′s coefficients at the
exact point. A maximum absolute amplitude (MAA) rule
with consistency verification is used for the coefficients of
the other three components (LH, HL, HH) in each level.

However, as many researchers have noticed, any nonlin-
ear operation following DWT, such as MAA-based selec-
tion, will cause many fluctuations near the strong edges.
Furthermore, with the increasing decomposition level, the
fluctuations will be much more serious, and thus an insur-
mountable difficulty[8,9]. That greatly limits the applica-
tion of DWT in image fusion.

2.2 Contrast-based fusion

Socolinsky et al have advanced a novel paradigm for im-
age fusion. They defined the contrast (i.e., the first fun-
damental form) of a multiband image, which agrees with
the gradient definition in the special case of single band.
They used the variational approach to find the solution,
i.e., the fused image, which has the closest gradient to
the multiband′s contrast. The objective contrast (or the
gradient of single-band image) is the only thing used in
this framework. We do not review the procedure here, in-
stead, we will describe the HVS-generalized contrast-based
scheme in Section 3. For the detailed description of con-
trast fusion method, please refer to [3∼6].
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2.3 Human visual system (HVS)

Fig. 2 The approximation of Weber′s law

The human visual system has been already investigated
for a long period of time[10∼12]. Among many literatures,
maybe the most important one is the Weber′s law, which
says that the ratio ∆IJ/I is constant within wide lim-
its of intensity, where I is the intensity and ∆IJ is just-
noticeable-difference (JND)[10,12]. According to [7], the re-
lation between ∆IJ/I and I satisfies the empirical relation
in Fig.2 approximately.

Unfortunately, as stated in [13], the application of JND
has some main difficulties:

• JND is only the case of the exact threshold, what the
perception will be when the stimulus is high above the
threshold?

• The empirical relation is obtained by the measure of
physical illumination, when we utilize it in digital images,
we mainly consider the intensity shown on the monitor,
or printed on the paper, what is the relation between the
intensity of a monitor luminance and the measure in the
empirical curve?

• The curve is obtained by some simple test pattern
such as Fig.3. When the natural image pattern, a complex
one, is considered, what is the corresponding perception by
HVS?

According to the problems listed above, in this paper,
we have the following assumptions respectively:

• We do not use JND as a threshold, but we assume it to
be a unit to measure the variations. A similar hypothesis
has been made in [11];

• Because the gray level shown on a monitor has the
identical order with the physical illumination, we think the
horizontal axis (I) of Fig.2 is the gray level (0-255) in digital
images. Following [14], we set the parameters as: P3 =
0.575, P2 = 0.09, P1 = 0.035, I0 = 0, I1 = 60, I2 = 200,
I3 = 255;

• The empirical curve still stands approximately for com-
plex patterns.

Then according to Fig.2, we can obtain the quantitative
relation between the gray level variation ∆I and perceptual
variation ∆Ip, measured by JND. We denote this relation
as the perceptual ratio c(I) = ∆Ip/∆I . Thus c is a factor
between objective intensity variation (∆I) and the percep-
tual one (∆Ip). Here, to avoid the zero-divided problem, I
is modified as (I + 1) in the denominators. Thus

∆Ip

∆I
= c(I)

≈

���
��

1
(0.575−0.009I)(I+1)

, if 0 ≤ I < 60
1

0.035(I+1)
, if 60 ≤ I ≤ 200

1
(0.035+0.001(I−200))(I+1)

, if 200 < I ≤ 255

(1)

Fig. 3 Test pattern of Weber′s law

This curve c will be used throughout this paper.

2.4 Our motivation
The existing contrast-based fusion method[3∼6] treats

the same variation with the same importance. Because the
feature in [3∼6] to fuse is “contrast” (objective variation,
first fundamental form, or gradient if the source is single-
band), which has lost the direct current (DC) component,
the intensity of the whole result is not certain, and thus
some clear contrast feature in the source may be visually
diminished in the result if the gray level is too high, ac-
cording to Weber′s law. The Weber′s law tells us that the
perceptual contrast depends not only on the variations of
intensity but also on the intensity of background. We con-
sider the DC component under the guidance of perceptual
ratio c. We choose the perceptual contrast as the feature
to fuse. Because the perceptual contrast is measured by
JND, which is relevant to the local DC value, the percep-
tual contrast field really contains the information of DC,
though in an implicit way. Thus, no matter what intensity
of the whole result is, the perceptual contrast feature we
want to preserve can be visually presented.

3 Perceptual contrast-based im-
age fusion

The local variations play an important role in computer
vision, because the human visual system is sensitive to
them[7]. Image fusion is then to combine the local vari-
ation from source images to the result. However, as stated
before, the same variation may cause different perceptions
under different backgrounds. So in this paper, the infor-
mation we want to preserve in image fusion is perceptual
contrast, other than the objective variation itself. In this
section, we first define the perceptual contrast of a single
band image. Then, in a similar way to [3∼6], we use the
eigen-decomposition to define the multiband image′s per-
ceptual contrast. Using the variational approach, we find
the fused image which has the closest perceptual contrast
to the multiband′s.
3.1 Perceptual contrast of single-band

gray level image
Let s : Ω → [0, 255](Ω ⊂ R2) be a gray level image.

Then the contrast of s can be defined as its gradient ∇s.

CCCs(x, y) = ∇s(x, y), ∀(x, y) ∈ Ω (2)

CCCs(x, y) represents the local variation of s at point (x, y),
the magnitude of CCCs(x, y) shows how fast the intensity
varies, while the intensity varies fastest in the direction
of CCCs(x, y).
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As far as the perceptual contrast is concerned, we modify
CCCs by the perceptual ratio c. The perceptual contrast pppCs

can be represented as

pppCs(x, y) = c(s(x, y))∇s(x, y), ∀(x, y) ∈ Ω (3)

where curve c follows (1). It can be seen that pppCs is, in
some sense, the normalized variation of s measured by JND.

3.2 Perceptual contrast of multiband im-
age

In the case of multiband image, we combine the pppC′
ss

of each band together, and define the multiband image′s
perceptual contrast.

Let s : Ω → Pn,Ω ⊂ R2 be the multiband image, where
Pn denotes n-dimensional photometric space with an arbi-
trary metric g. Let p be a point in Ω , and vvv an arbitrary
unit vector in R2. Let γ : [−ε1, ε2] → Ω be a curve de-
fined on a small interval, with ε1 > 0, ε2 > 0, such that
γ(0) = p and γ′(0) = vvv. The rate of variation of s at p in
the direction of vvv is given by the magnitude of the vector
sss∗(vvv) ≡ d

dl
(s ◦ γ)(l)|l=0 , where the composition operator ◦

denotes that (s ◦ γ)(l) ≡ s(γ(l)), l ∈ [−ε1, ε2]. Thus we can
easily get

sss∗(v) = Jpvvv (4)

where Jp is the Jacobian matrix of s at the point p. Then
the perceptual contrast at p in the direction vvv is given by
the quantity

(Jpvvv)tgs(p)(Jpvvv) = vvvt (J t
pgs(p)Jp)vvv (5)

Here, since we want to evaluate the perceptual variations,
the metric g should represent the perceptual meanings and
we choose it as

gs(p) = diag{c2(sk(p))}k=1,2,···n (6)

Let χ2
i,j = J t

pgs(p)Jp , then we have

χ2
i,j(p) =

n�
k=1

c2(sk(p))
∂sk

∂xi

∂sk

∂xj
, 0 ≤ i, j ≤ 1 (7)

χ2 is the image contrast form of the objective varia-
tions evaluated by a perceptual metric gs(p). From an-

other viewpoint, one can think χ2 as the contrast form
of perceptual variations by an Euclidean metric, since
pCs(x, y) = c(s(x, y))∇s(x, y) stands, as defined in (3).
The contrast form χ2 is the first fundamental form of the
perceptual contrast of the multichannel source.

χ2 is a nonnegative matrix with two nonnegative eigen-
values {λ+, λ−}(λ+ ≥ λ− ≥ 0), and the corresponding
normalized eigenvectors are EEE+,EEE−. Then the perceptual
contrast at point p is defined as a 2-dimensional vector
VVV ∗(p)

VVV ∗(p) =
�

λ(p)+ ·EEE(p)+ (8)

Where
�

λ(p)+ is the maximum perceptual variation am-
plitude in all 2D directions, and the corresponding varia-
tional direction is exactly EEE(p)+. Because EEE+ and −EEE+

can span the same eigenspace, and they do not have any
priority, we must choose one out of them, or there will be
a direction ambiguity. Here we select the contrast of the
average bands as an auxiliary function.

CCCs aux =
1

n
∇

n�
i=1

si (9)

Fig. 4 Amplitude of the perceptual contrast

Because the multiband image′s perceptual contrast must
represent the general variations of each band, intuitively
it should be close to CCCs aux in direction, then a further
modification to determine the value of perceptual contrast
can be made as

VVV (p) = VVV ∗(p)sign(CCCs aux(p) · VVV ∗(p)) (10)

where

sign(t) =

�
1 , if t ≥ 0

−1 , else
(11)

Equation (10) is the final definition of multiband image′s
perceptual contrast in this paper. For a special case n = 1,
the single-band gray level image, we may easily find that
(10) is exactly the same as (3), which shows the reason-
ableness of such a definition.

Here we give an example for the multiband image′s per-
ceptual contrast. The amplitude |VVV | of T1-, T2-weighted
MRI is shown in Fig.4. According to this illustration, the
main contrasts, such as the contours, in the sources are well
preserved in the perceptual contrast |VVV |.
3.3 Variational formulae and gradient de-

scent
In Section 3.2, a multiband image′s perceptual contrast

has been constructed, which agrees with the single band′s
very well. It depicts the dominant perceptual variations of
the sources. What to do next is how to visualize VVV (p). An
intuitive way is to solve the equation for f

c(f(p))∇f(p) = VVV (p), ∀p ∈ Ω (12)

However, this equation generally has no solution. The
substitute is to find a 2-D function f(p), 0 ≤ f(p) ≤
255, ∀p ∈ Ω , which minimizes the following functional

Q∗(f) =

��
Ω

|c(f)∇f −VVV |2dx0dx1 (13)

where the notation | · | denotes the length of a vector.
The first fundamental form is very sensitive to noise,

and so is the target perceptual contrast VVV , since it con-
siders only the local variation. To smooth such a noise-
oriented case, TV (total variation) model[15] is employed.

A very similar case has been used in image enhancement[16].
Adopt such TV energy, we minimize the following energy
instead of (13).

Q(f) = α

��
Ω

|∇f |dx0dx1 + β

��
Ω

|c(f)∇f −VVV |2dx0dx1

(14)
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(a) MRI-T1 (b) MRI-T2 (c) DWT fusion[2] (d) Perceptual fusion

Fig. 5 Image fusion experiment on brain MRI images

(a) Left blurred baboon (b) Right blurred baboon (c) Contrast fusion [5] (d) Perceptual fusion

Fig. 6 Image fusion experiment on “multifocused” baboon

where α, β are positive parameters weighting the smooth-
ness and the contrast fidelity.

Using the variational approach[17], we can derive the cor-
responding partial differential equation (PDE) with a given
Neumann boundary condition as (15).

�
2β(c′(f)|∇f |2 + c(f)∇2f − divVVV ) + α∇ · ( ∇f

|∇f | ) = 0, onΩ |∂Ω

∇f · −→n = 0, on ∂Ω

(15)

Here, Neumann condition is straightforward because in
image processing, the boundaries are usually extended sym-
metrically.

Then the minimizer of (14) can be found by a gradient
descent procedure with iterations like (16), where k is the
stepsize with a positive value. To ensure the convergence,
k has a small positive value in general.

f t+1 = f t + k · (2β(c′(f t)|∇f t|2 + c(f t)∇2f t − divVVV ) +

α∇ · ( ∇f t

|∇f t | )) (16)

Considering that curve c in (1) has the finite support,
(16) must be re-constrained after each iteration, as (17).

����
���

f t+ 1
2 = f t + k · (2β(c′(f t)|∇f t|2 + c(f t)∇2f t − divVVV )+

α∇ · ( ∇f t

|∇f t| ))

f t+1 = max(0, min(f t+1
2 , 255))

(17)

3.4 Discretization scheme

In this section, we discuss the issue on discretization of
the iteration (17).

Because the method proposed in this paper is on pixel-
level image fusion, we had better use the central difference
in realizing the derivative operators to ensure their sym-
metric spatial support, so that the visible shift is avoided.
But we do not do in such a way. Instead, we use the for-
ward difference in all the first-order derivative operators on
f and sk, including ∂/∂xi in generating VVV and ∇ in itera-
tions; while VVV is concerned, “div” is realized by a backward
difference. The Laplace operator ∇2 is simply realized by
5-points discretization scheme. Using these operations, we
successfully avoid the computational load coming from cen-
tral difference in half-pixel, and simultaneously, we ensure
the absence of visible shift in pixel.

As far as the boundary region is considered, analogous
to many tasks in image processing, we extend the original
image (f and sk) symmetrically. Meanwhile, because the
original image is extended symmetrically, when the “div”
operator is applied, VVV should be extended by zero-padding.

The other parameters in (17) are chosen as: kβ = 0.1,
kα = 0.001, the iteration will stop when t reaches 600. In
a theoretical view, f0 can be any randomly selected initial
value. However, the model (13) is not convex, thus we can
not guarantee that the global minimum will be found using
an iterative procedure of gradient descent as (17). Such
an iterative procedure may seek a “good” local minimum
of (14). There is reason to believe that the local extrema
approach is more relevant to this image fusion task if we
choose the initial value as the average of input bands, since
the fusion result should represent the input bands’ infor-



136 ACTA AUTOMATICA SINICA Vol. 33

(a) CT (b) MR (c) DWT fusion[2]

(d) Contrast fusion [5] (e) Perceptual fusion (f) LPT fusion[20]

Fig. 7 Image fusion experiment on CT and MR of brain

mation, i.e.,

f0 =
1

n

n�
i=1

si (18)

Another key problem must be stated here. As one may
find out that the curve c may not be differentiable when I =
0, 60, 200, 255. At these points, we define c′(0) = c′(0+),
c′(60) = c′(60+), c′(200) = c′(200−), c′(255) = c′(255−).

4 Experiments

Based on the image fusion scheme proposed above, we
conduct some experiments.

First, the proposed perceptual contrast based method
and DWT method[2] are compared. The source images
are the brain MRI of T1-, T2-weighted[18], as shown in
Figs.5(a)(b). When the method based on DWT[2] is em-
ployed, the result is Fig.5(c). It can be seen that the seri-
ous fluctuations occur around edges of the “head”, and the
whole image looks a little blurred. The result generated
by the perceptual contrast based method looks better, as
shown in Fig.5(d).

The second experiment is to compare the contrast
method in [5] and the one proposed in this paper. The
source images are “baboon” blurred on the left and right
parts, respectively, as shown in Figs.6(a)(b). The result
generated from contrast-based method in [5] is (c). The
baboon′s “eyebrows” in (c) is almost mixed up with the
hair on the face, and the intesity of the whole image (c)
is not very satisfying, because [5] only considers the objec-
tive variations of the image with the DC component lost.
For the method proposed in this paper, the result is (d),
the HVS curve c ensures that the same perceptual contrast
stands for the same information, and under the constraint
of c, the whole image′s gray level will not deviate too much
in general.

The third experiment is also on the medical images. The
source images are CT and MRI, see Figs.7(a)(b). Here we

compare four methods: DWT fusion[2], contrast fusion[5],
the proposed perceptual contrast fusion and Laplacian
Pyramid fusion(LPT)[19], together with a subjective exper-
iment on the four results. The results are (c)∼(f). (c) is
the fusion result using DWT method in [2], where we can
see the fluctuations in the region of the bottom part; (d)
is the fusion result using the contrast method in [5], (e)
is the result of the perceptual contrast based method, and
(f) is the result of LPT[19]. The contour of MR in (e) is
preserved much more clearly than in (d), and the whole
intensity of (e) is more satisfying than (d), and also the
details in (d) are clearer than the one in (f). In the subjec-
tive experiment, we show Fig.7 to ten judges (six of them
have been working in the area of image processing or medi-
cine, and the rest are naive), and ask them to compare
each fusion result with the source images and rank them
according to fusion quality. The average ranking value is
listed in Table 1, which shows that the subjective exper-
iment also supports our perceptual contrast based fusion
algorithm. We also employ an objective mutual informa-
tion measurement[20] to measure such results, as listed in
the last two rows of Table 1. Both objective and subjec-
tive measurements show that our method is better than the
other three methods.

5 Conclusion and future direc-
tion

In this paper, we have generalized the contrast
method[3∼6] for image fusion by the characteristics of hu-
man visual system (HVS). We first define the perceptual
contrast of a multiband image by eigen-decomposition,
which agrees with the single band image′s well in the special
case. Then we construct a functional extremum problem
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Table 1 Subjective and objective ranking of the four results in Fig.7

DWT fusion [2] Contrast fusion [5] Perceptual fusion LPT fusion [20]

average subjective ranking (ASR) 2.6 2.4 1.1 3.9
ranking of ASR 3 2 1 4

object measure[19] 1.4881 1.2880 2.3201 0.9848
ranking of object measure 2 3 1 4

to find a single band image, which has the closest percep-
tual contrast to the source multiband′s. Using variational
approach and gradient descent, we realize the single band
visualization of the target perceptual contrast via itera-
tions. Experimental results show that this perceptual con-
trast based method is perceptually good.

However, in the method proposed in this paper, there
are still some problems. They mainly correspond to the
assumptions listed in the last of Section 2.

• JND is actually not the unit measure of variations, i.e.,
the perceptual contrast is not linear with JND when the
stimulus is high above the JND, though some researchers
have done so. A more reasonable perceptual measure might
be used for this model.

• Since the test patterns for HVS are simple, under com-
plex circumstance, we can find some other manner to use
the HVS, e.g., can the background intensity I be used by
the local blurred intensity?

• In general, multiscale methods have better perfor-
mance than the single scale one, under the same other con-
ditions. How to incorporate multiscale schemes into the
perceptual contrast framework (e.g., in [21]) is also a fur-
ther topic to study.

These problems deserve our further study.
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