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Hybrid Simplex-improved
Genetic Algorithm for Global

Numerical Optimization

REN Zi-Wu1 SAN Ye1 CHEN Jun-Feng2

Abstract In this paper, a hybrid simplex-improved genetic

algorithm (HSIGA) which combines simplex method (SM) and

genetic algorithm (GA) is proposed to solve global numerical

optimization problems. In this hybrid algorithm some improved

genetic mechanisms, for example, non-linear ranking selection,

competition and selection among several crossover offspring,

adaptive change of mutation scaling and stage evolution, are

adopted; and new population is produced through three ap-

proaches, i.e. elitist strategy, modified simplex strategy and

improved genetic algorithm (IGA) strategy. Numerical experi-

ments are included to demonstrate effectiveness of the proposed

algorithm.

Key words Genetic algorithm, simplex method, competition

and selection,mutation scaling

1 Introduction

Genetic algorithm (GA) is a stochastic and parallel

search technique based on the mechanics of natural selec-

tion, genetics and evolution, which was first developed by

Holland in 1970s[1]. In recent years, GA has been widely

applied to different areas such as fuzzy systems, neural net-

works, etc.[2] Although GA has become one of the popu-

lar methods to address some global optimization problems,

the major problem of GA is that it may be trapped in

the local optima of the objective function when the prob-

lem dimension is high and there are numerous local op-

tima. This degradation in efficiency is apparent especially

in applications where the parameters being optimized are

highly correlated[3]. In order to overcome these flaws and

improve the GA′s optimization efficiency, recent research

works have been generally focused on two aspects. One is

improvements upon the mechanism of the algorithm, such

as modification of genetic operators, or the use of niche

technique[4], etc; the other is combination of GA with other

optimization methods, such as BFGS methods[5], simulated

annealing (SA), etc.

In this paper, a hybrid simplex-improved genetic algo-

rithm (HSIGA) is proposed to solve global numerical op-

timization problems. In this hybrid algorithm some im-

proved genetic mechanisms are adopted, such as non-linear

ranking selection, competition and selection among several

crossover offspring, adaptive change of mutation scaling

and adaptive stage evolution mechanism, to form an im-

Received June 17, 2005; in revised form April 26, 2006
Supported by National Natural Science Foundation of P.R.China

(60474069)
1. Control & Simulation centre, Harbin Institute of Technology,

Harbin 150080, P.R.China 2. College of Computer & Information
Engineering, Hohai University, Changzhou 213022, P.R. China
DOI: 10.1360/aas-007-0091

proved genetic algorithm (IGA). For further performance

enhancement, the IGA algorithm is combined with the

simplex method (SM) and the new population is gener-

ated through three approaches, i.e. elitist strategy, simplex

strategy and IGA strategy. We investigate the effectiveness

of this proposed algorithm by solving 10 test functions with

high dimensions.

2 Hybrid simplex-improved genetic algo-
rithm (HSIGA) for numerical optimiza-
tion

In this paper, the following minimization problem with

fixed boundaries is considered

minimize f(x ) = f(x1, x2, · · · , xn)

subject to xmin
i 6 xi 6 xmax

i (i = 1, 2, · · · , n) (1)

where x = (x1, x2, · · · , xn) is a variable vector in RRRn, f(x )

denotes the objective function, and xmin
i and xmax

i repre-

sent the lower and the upper bounds of xi such that the

meaningful range of xi is [xmin
i , xmax

i ].

2.1 Improved genetic algorithm (IGA)

For the minimization problem like (1), we adopt real-

code GA and firstly introduce IGA.

1) Non-linear ranking selection operator

In order to select some excellent chromosomes from the

parent generation, non-linear ranking selection is adopted

in this paper, which maps chromosome′s serial number in

the queue to an expected selection probability.

With the population pop = {x 1, x 2, · · · x i, · · · , xP } of P

chromosomes, we distribute the probability to each chromo-

some from the best to the worst by a non-linear function,

so the selection probability of chromosome x i is
8
<
:

p(xi) = q′(1− q)i−1

q′ =
q

1− (1− q)P

(2)

where q is the selection probability of the best chromosome,

i is the serial number of the chromosome.

After the selection probability of each chromosome is de-

termined, the roulette wheel selection is adopted to select

the excellent chromosome. Ranking selection need neither

use the individual′s fitness nor transform the fitness scaling,

which can prevent the premature convergence or stagnation

phenomenon to a certain extent.

2) Competition and selection among several

crossover offspring

In the natural evolution, parents often reproduce more

than two offspring after crossover operation, and com-

petition phenomenon between offspring of the same par-

ents also always occurs. Illumined by this idea, competi-

tion and selection of the excellent among the several off-

spring is employed in the crossover operator. Different

from the crossover operation of the simple genetic algo-

rithm (SGA), four chromosomes are created firstly from

the parents xs = [xs
1, x

s
2, · · · , xs

n] and xt = [xt
1, x

t
2, · · · , xt

n]

c© 2007 by Acta Automatica Sinica. All rights reserved.
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(s 6= t) according to the following formulae[2].

y1 = [y1
1 , y1

2 , · · · , y1
n] =

xs + xt

2
(3)

y2 = [y2
1 , y2

2 , · · · , y2
n] = xmax(1− ω) + max(xs, xt)ω (4)

y3 = [y3
1 , y3

2 , · · · , y3
n] = xmin(1− ω) + min(xs, xt)ω (5)

y4 = [y4
1 , y4

2 , · · · , y4
n] =

(xmax + xmin)(1− ω) + (xs + xt)ω

2
(6)

xmax = [xmax
1 , xmax

2 , · · · , xmax
n ] (7)

xmin = [xmin
1 , xmin

2 , · · · , xmin
n ] (8)

where ω ∈ [0, 1] is a weight, max(x s, x t)is the vector with

each element obtained by taking the maximum among

the corresponding element of x s and x t. For example,

max([1 − 2 3], [2 3 1]) = [2 3 3]. Similarly, min(x s, x t)

denotes a vector obtained by taking the minimum value.

Among these 4 chromosomes, the two with superior fitness

value are taken as the offspring of the crossover operation.

It can be seen that the potential offspring can spread over

the domain, and this crossover operator is superior to the

single arithmetic crossover or heuristic crossover.

3) Adaptive change of mutation scaling

Different from the uniform mutation, boundary muta-

tion, etc, a mutation operator with adaptive change of mu-

tation scaling is employed. According to “the punctuated

equilibrium theory”[6] in the evolution field, species evo-

lution always appears in many and different directions at

previous stage while the evolution tends to be conservative

at later stage. Therefore, a larger mutation range is em-

ployed during previous stage to keep the population diver-

sified while the mutation range will be shrunken gradually

during later stage to focus on local search.

Supposing that the mutation scaling is µ (0 6 µ 6 1),

the element xk (xk ∈ [xmin
k , xmax

k ]) selected in the chro-

mosome (x1, x2, · · · , xk, · · · , xn) is to be mutated with a

certain mutation probability Pm. Then this original value

xk will be replaced by the mutated value xnew
k chosen from

the range

xnew
k ∈

n
max(xk − µ

xmax
k −xmin

k
2

, xmin
k ) ,

min(xk + µ
xmax

k −xmin
k

2
, xmax

k )
o

(9)

with a uniform probability.Based on the concept that the

mutation scaling µ is decreasing gradually during the pro-

cess, a monotonously decreasing function of the mutation

scaling µ is built

µ(τ) = 1− r(1− τ
T

)b

(10)

where T is the number of generations, τ is the current it-

eration, and the weight r ∈ [0, 1]. From the formula (10) it

can be seen that for a small value of weight r, the mutation

scaling µ is near to one at the beginning of the optimiza-

tion, and the mutation scaling µ will be decreasing down

to zero as the run progresses.

4) Adaptive strategy of stage evolution

During the process of evolution, the diversity of popu-

lation is descending. When the diversity decreases to a

certain level, the algorithm searching is over[1]. Generally,

at a previous stage larger crossover and mutation probabi-

lity can work obviously, while at a later stage the crossover

and mutation probability had better be smaller since the

algorithm has entered into the local searching process. For

the selection operator, it is a good idea to choose smaller

selection pressure at the beginning, and adopt larger selec-

tion pressure later to promote local searching.

Based on this idea, a model based on stage evolution is

developed. We divide the whole process into 3 stages:

First stage: τ ∈ [0, T1] T1 = αT

Second stage: τ ∈ (T1, T2] T2 = (1− α)T

Third stage: τ ∈ (T2, T ]

where T and τ have been defined as above, generally pa-

rameter α is equal to 0.382. Then we choose three different

best individual′s selection probability q, crossover proba-

bility Pc and mutation probability Pm for each stage.
2.2 Hybrid simplex-improved genetic algorithm

(HSIGA)

In order to improve the local fine tuning capability of GA

and quicken the convergence rate, we combine the IGA with

the simplex method (SM) to form a hybrid optimization

algorithm[7]. The detailed process is as follows.

All chromosomes in the current generation are arranged

from the best to the worst firstly, and new population in

the next generation is generated through the following three

approaches.

1) Elitist strategy: The first N top-ranking chromosomes

(elites) are reproduced directly into the next generation so

that these elites can not be destroyed by the 3 operations

of the GA or other operations.

2) Modified simplex strategy: In this HSIGA algorithm,

the S (S > N) top members in population produce S -N new

chromosomes through the modified simplex method. In

modified simplex method, the new generated chromosome

is generated by reflecting x j over the centroid xc of the

remaining points as follows.

xnew
j = x c + α(x c − x j) (j = N + 1, · · · , S) (11)

where the centroid is equal to x c = (x 1 +x 2 + · · ·+xN )/N ,

α is a random value.

3) Improved genetic algorithm (IGA) strategy: The re-

maining P -S children (where P is the population size) in

the new generation are created through the IGA acting on

the whole population.

Fig.1 depicts the architecture of this HSIGA algorithm.

We can refer to the hybrid degree (S/P ) by using the per-

centage of population to which the modified simplex opera-

tor is applied. From it we can see that the hybrid algorithm

will become a real-code IGA when the hybrid degree (S/P )

is zero; while the hybrid degree (S/P ) is equal to 100%,

the algorithm will turn into the modified simplex method.

Generally S is around 20 percent of the size P .
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Fig.2 Procedure of the HSIGA algorithm

Fig.1 Architecture of the hybrid simplex-IGA algorithm

The new population in HSIGA is produced through these

3 strategies with the following advantages.

1) In GA the coding of elitists would be changed or de-

stroyed after the genetic operation, and the produced off-

spring may be less fitness than their parents. Elitist stra-

tegy is an effective approach to avoid the damage of the

elitists, which is necessary to enhance the capacity of the

algorithm.

2) Some novel genetic operations are used in IGA, such as

the crossover and the mutation operator. The idea of these

operations is mainly from the nature. The genetic mech-

anisms try to mimic the maturing phenomenon in nature,

which makes the individuals more suitable to the environ-

ment, and enhances the optimization performance.

3) GA is global search procedure. It is less likely to be

trapped in local optima, but the convergence rate will slow

down and the computational cost is high at later stage. SM

is a local search method whose merits are simple and com-

putationally efficient, however it is easily entrapped in a

local optimum. The hybrid of these two methods can com-

bine the respective merits, which can speed up the conver-

gence rate and avoid being entrapped in a local optimum.

Moreover, HSIGA applies simplex reproduction to the top-

ranking individuals, and applies simplex search to many

points not a single one in the vicinity of optimum, which

can quicken the convergence rate greatly.

Based on the above, the pseudo code of this HSIGA al-

gorithm can be depicted in Fig.2.

3 Numerical experiment and results
We execute the HSIGA to solve 10 benchmark

functions[8∼12] in Table 1. f1-f6 are multimodal functions

where the number of local minima increases with the prob-

lem dimension; f7-f10 are unimodal functions.

In some recent studies, functions f1-f10 were tested

by the FEP[8], OGA/Q[9], CEP[10], PSO[11], EO[11], and

FES[12] optimization algorithms. From the results of these

numerical experiments, it can be seen that the OGA/Q[9]

can give more robust and significantly better results than

some other optimization algorithms, such as the CEP[10],

PSO[11], EO[11], FES[12] etc. Therefore we adopt the ten

benchmark functions to test our proposed HSIGA, and only

to compare the performance of the HSIGA with the per-

formance of FEP[8] and OGA/Q[9].
3.1 Control experiment

In order to identify any improvement due to improved

genetic operations and combination with the modified sim-

plex method, the following control experiments are de-

signed and carried out. We execute the IGA and SGA

to solve the test functions, where IGA is similar to HSIGA

basically, except for the top members’ number S in the

population. In IGA the number of top members S is equal

to zero, while in HSIGA S is 20 percent of the size P . SGA

neither apply any improved genetic mechanisms nor com-

bines with other optimization method; it adopts only tra-

ditional operations, such as fitness-proportionate selection,

arithmetic crossover and uniform mutation operation.
3.2 Parameter values

Before solving these test functions, some parameters

should be assigned for each algorithm.
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Table 1 List of 10 test functions used in experimental study, where n is the function dimension, n=30

Test functions Solution space

f1(x) =
nP

i=1
(−xi sin

p|xi|) [−500, 500]n

f2(x) =
nP

i=1
[x2

i − 10 cos(2πxi) + 10] [−5.12, 5.12]n

f3(x) = −20 exp

 
−0.2

s
1
n

nP
i=1

x2
i

!
− exp

 
1
n

nP
i=1

cos(2πxi)

!
+ 20 + exp(1) [−32, 32]n

f4(x) = 1
4000

nP
i=1

x2
i −

nQ
i=1

cos(
xi√

i
) + 1 [−600, 600]n

f5(x) = π
n

(
10 sin2(πy1) +

n−1P
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2
)

+
nP

i=1
u(xi, 10, 100, 4)

u(xi, a, k, m) =

8
><
>:

k(xi − a)m

0

k(−xi − a)m

xi > a

−a 6 xi 6 a;

xi < −a

yi = 1 + 1
4 (xi + 1)

[−50, 50]n

f6(x) = 1
10

(
sin3(3πx1) +

n−1P
i=1

(xi − 1)2[1 + sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πxn)]

)
+

nP
i=1

u(xi, 5, 100, 4) [−50, 50]n

f7(x) =
nP

i=1
x2

i [−100, 100]n

f8(x) =
nP

i=1
|xi| +

nQ
i=1

|xi| [−10, 10]n

f9(x) =
nP

i=1

 
iP

j=1
xj

!2
[−100, 100]n

f10(x) = max {|xi| , i = 1, 2, · · · , n} [−100, 100]n

For the HSIGA and the IGA algorithms:

• Population size: We choose a moderate population size

P = 60.

• Genetic probabilities: The whole evolution is divided

into 3 stages. Table 2 shows the best chromosome’s selec-

tion probability q, crossover probability Pc and mutation

probability Pm at each stage.

• Mutation parameters: The parameter r in the muta-

tion scaling function is 0.5, and parameter b is equal to

2.

• Stopping criterion: For each function has different com-

plexity, we use different stopping criterion. Table 3 lists the

evolution generations T for each function. When the cur-

rent iteration τ reaches T , the execution is stopped.

In addition, the modified simplex strategy is adopted in

the HSIGA algorithm.We choose the hybrid degree of the

HSIGA algorithm (S/P )=20%, and elites N is equal to

four. In IGA the hybrid degree is equal to zero.

For the SGA algorithm:

• Population size: Population size of the SGA is 150,

which is larger than that of the IGA and the HSIGA.

• Selection operation: Fitness-proportionate selection is

adopted.

• Crossover operation: Arithmetic crossover is employed

and crossover probability Pc is 0.80.

• Mutation operation: Uniform mutation is used and

mutation probability Pm is 0.02.

• Stopping criterion: In SGA if the fitness value of the

best chromosomes cannot be further reduced in successive

50 generations after 500 generations, the execution of the

algorithm is stopped.
3.3 Results and comparison

Since the SGA uses different evolutionary parameters

and termination criterion from those adopted by the IGA

and the HSIGA, to make a fair comparison, we will calcu-

late firstly the computational cost of each algorithm, and

compare the qualities of their final solutions at the given

computational cost.

Each test function is performed in 50 independent runs

and the following results are recorded: 1) the mean number

of function evaluations; 2) the mean function value; and

3) the standard deviation of the function values. Table 4

shows each algorithm’s results in the control experiment.

From these results in Table 4 it can be seen that

• As can be seen, HSIGA finds the exact global optimum,

0, for functions f2, f4 and f7∼f10. For other functions the

mean function values of HSIGA are close to the optimal

ones and the standard deviations are small. These results

indicate that HSIGA can find optimal or close-to-optimal

solutions, and its solution quality is quite stable.

• Compared to the results of SGA, the proposed HSIGA

algorithm requires less function evaluations than SGA, and

hence it has a smaller time complexity.However, HSIGA

gives significantly smaller and closer-to-optimal solution

than SGA, and hence its mean solution quality is much

better than SGA. In addition, HSIGA gives smaller stan-

dard deviations of function values than SGA, so its solution

quality is more stable.

• Compared to the results of IGA, though the gener-

ations T of these two algorithms are equal, HSIGA re-

quires less function evaluations than IGA. This is because

part individuals of next generation in HSIGA are produced

through elite strategy and modified simplex strategy. Ho-

wever, HSIGA gives smaller mean function values, and

gives equal or smaller standard deviations of function values

than IGA for the 10 functions, and hence the solution qual-

ity of HSIGA is better than that of IGA, and the HSIGA

algorithm is statistically stable.

Next, the performance of HSIGA is compared with the

that of FEP[8] and OGA/Q[9] algorithms. Since in [8] and

[9] the optimization results using these two algorithms are

available for the 10 test functions, the comparison will be

made accordingly and the results are listed in Table 5.
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Table 2 Adaptive change value of parameter (τ : Current iteration; T : Evolution generations)

τ q Pc Pm

τ ∈ [0, T1] 0.08 0.95 0.08

τ ∈ (T1, T2] 0.10 0.80 0.05

τ ∈ (T2, T ] 0.12 0.65 0.02

Table 3 HSIGA and IGA number of generations for each function (TF: Test function NG: Number of generations)

TF f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

NG 500 30 50 40 500 500 400 500 400 500

Table 4 Comparison of optimization result and computation effort among HSIGA, IGA and SGA

Mean number of function evaluations Mean function value (standard deviation)
f

HSIGA IGA SGA HSIGA IGA SGA
fmin

f1 68,412 78,052 89,877 -12569.4740 (1.0604E-4) -12569.4530 (1.3782E-2) -6422.1504 (869.3862) -12569.5

f2 4,130 4,698 259,965 0 (0) 7.0237E-14 (2.4246E-13) 1.9255 (8.0727) 0

f3 6,853 7,825 229,926 8.8818E-16 (0) 5.8950E-13 (2.1217E-12) 6.2034E-2 (3.4579E-2) 0

f4 5,482 6,275 146,463 0 (0) 2.2693E-15 (6.9245E-15) 7.0871E-1 (3.8481E-1) 0

f5 68,429 78,044 319,695 3.2475E-6 (3.5963E-6) 1.7855E-5 (9.0217E-6) 3.5947E-4 (6.2180E-4) 0

f6 68,417 78,044 334,896 9.0181E-5 (1.0448E-5) 5.0194E-4 (1.5354E-3) 1.0965E-2 (2.2325E-2) 0

f7 54,745 62,446 322,368 0 (0) 2.2817E-183 (0) 9.6696E-2 (8.4127E-2) 0

f8 68,434 78,002 211,680 0 (0) 8.9611E-115 (5.7284E-114) 3.8576E-2 (2.0601E-2) 0

f9 54,702 62,391 269,658 0 (0) 5.3675E-186 (0) 219.8387 (118.2618) 0

f10 68,361 78,004 126,852 0 (0) 6.3391E-116 (3.1639E-115) 9.0751E-1 (2.6103E-1) 0

Table 5 Comparison between HSIGA and OGA/Q[9] and FEP[8]

Mean number of function evaluations Mean function value (standard deviation)
f

HSIGA OGA/Q[9] FEP[8] HSIGA OGA/Q[9] FEP[8] fmin

f1 68,412 302,166 900,000 -12569.4740 (1.0604E-4) -12569.4537 (6.4470E-4) -12554.5 (52.6) -12569.5

f2 4,130 224,710 500,000 0 (0) 0 (0) 4.6E-2 (1.2E-2) 0

f3 6,853 112,421 150,000 8.8818E-16 (0) 4.4400E-16 (3.9890E-17) 1.8E-2 (2.1E-3) 0

f4 5,482 134,000 200,000 0 (0) 0 (0) 1.6E-2 (2.2E-2) 0

f5 68,429 134,556 150,000 3.2475E-6 (3.5963E-6) 6.0190E-6 (1.1590E-6) 9.2E-6 (3.6E-6) 0

f6 68,417 134,143 150,000 9.0181E-5 (1.0448E-5) 1.8690E-4 (2.6150E-5) 1.6E-4 (7.3E-5) 0

f7 54,745 112,559 150,000 0 (0) 0 (0) 5.7E-4 (1.3E-4) 0

f8 68,434 112,612 200,000 0 (0) 0 (0) 8.1E-3 (7.7E-4) 0

f9 54,702 112,576 500,000 0 (0) 0 (0) 1.6E-2 (1.4E-2) 0

f10 68,361 112,893 500,000 0 (0) 0 (0) 0.3 (0.5) 0

From Table 5, it can be seen that the HSIGA exhibits

more accurate results and a superior performance over FEP,

while the required computational effort is less than that

required by FEP for all the functions. For f1, f5, and f6

HSIGA can give smaller mean function values using smaller

numbers of function evaluations than OGA/Q. For f2, f4

and f7∼f10, the solutions of HSIGA are as good as those

of OGA/Q, but the mean number of function evaluations

of HSIGA is much lower than those of OGA/Q. For func-

tion f3, HSIGA gives a mean function value of 8.8818E-16,

which is already very close to the global minimum 0, using

6 853 function evaluations; OGA/Q gives a mean function

value 4.4400E-16, which is smaller than that of HSIGA,

but it uses 112 421 function evaluations, namely, 16 times

the computational cost of HSIGA. In other words, HSIGA

can find close-to-optimal solutions, but OGA/Q can find

closer-to-optimal solutions using much more function eva-

luations for function f3. In addition, HSIGA gives smaller

standard deviation of function values than FEP and gives

equal or smaller standard deviation of function values than

OGA/Q (except function f5), hence it has a more stable so-

lution quality. To summarize, the results show that HSIGA

outperforms FEP and OGA/Q, and is competent for the

numerical optimization problems.

4 Conclusion

In this paper, the HSIGA has been presented to solve

global numerical optimization problems.This methodology

involves a novel improvement on the genetic mechanism

and combination with the modified simplex method to en-

hance the genetic algorithm.The HSIGA has been carried

out to solve 10 benchmark problems with high dimensions.

Results obtained from 50 trials for each function show that

the proposed HSIGA is able to find optimal or close-to-
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optimal solutions for all these test functions; moreover the

behavior of the algorithm is stable. Comparison of the

HSIGA outcome with those from several other global opti-

mization algorithms demonstrates that the HSIGA is more

competitive than some recent algorithms on the problem

studied.
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