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Quantum Control Strategy Based on State Distance
CONG Shuang1 KUANG Sen2

Abstract Based on Bures distance, a Lyapunov function that represents the distance between a desired state and the actual state
of a quantum system is selected. Considering the cases that an initial state is and is not orthogonal to the desired state respectively,
we propose a class of control strategies with state feedback that ensures the stability of the closed-loop control system. Especially,
the asymptotic stability of the control system is analyzed, deduced and proved in detail. Finally, a simulation experiment on a
spin-1/2 particle system is done and the relation between the system state evolution time and control value is analyzed with different
parameters . Research results have general theoretical meaning for control of quantum systems.
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1 Introduction

Miniaturization of electronic circuits and devices, and
the advances in laser technology make the quantum system
control become an increasingly important research field. It
involves control of molecular dynamics, quantum calcula-
ting, nuclear magnetic resonance (NMR), design of semi-
conductor nanometric devices, quantum information pro-
cessing, quantum communication and so on[1,2].

State steering of quantum systems is an important ob-
ject in quantum control, i.e. when an initial state and a
final one are given, how to look for some realizable control
fields to drive the initial state to the final one. Many de-
sign methods may achieve this aim, such as optimal control
technique, decoupling techniques, factorization techniques
of the unitary group, and Lyapunov-based techniques. The
paper is devoted to Lyapunov-based technique and theo-
retically designs a Lyapunov function representing the dis-
tance between the two states. According to Lyapunov sta-
bility law, one can achieve the quantum evolution from an
initial state to a desired one. In comparison to [3], the
main contributions of this paper include the following as-
pects. Firstly, the case that an initial state is orthogonal
to a final state is developed. Secondly, the asymptotic sta-
bility of the system is studied in a new style. Moreover,
the simulation experiment on a spin-1/2 particle system is
done and the influence of different parameters on control
results is obtained. Especially, the procedure for controller
designing is given.

2 Selection of Lyapunov func-
tion

In physics, if all the physical quantities representing a
system are given, one will know its states[4]. The develop-
ment of quantum theory shows that the wave functions of a
quantum system are its states. By expanding all the states
in the Hilbert space of a quantum system as the linear com-
bination of the eigenfunctions of a mechanical quantity, one
can get the same dimensional coordinate vectors. Let the
dimension equal n. Evidently, the n dimensional vector
space Cn is isomorphic to the Hilbert space. Correspon-
dingly, all the quantum mechanical objects, such as quan-
tum operators, evolution equations and so on, are described
in terms of their coordinate vectors or matrixes.

Generally, the square of the error between the actual
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state and the desired state of a system is usually selected
as a Lyapunov function. In the paper, the distance be-
tween an actual state and a desired state is taken as a
Lyapunov function. Thus the distance decreases continu-
ously when the time derivative of the Lyapunov function is
kept non-positive. There are many notions of the distance
between states. However, the meaning of Bures distance
is very intuitional, which represents the Euclidean distance
between two equivalence classes. Therefore, Bures distance
is adopted. Its definition is[3]

dB (|ψψψ1〉, |ψψψ2〉) = min
θ
‖ |ψψψ1〉 − eiθ|ψψψ2〉 ‖ (1)

where θ ∈ R, which represents an arbitrary phase. One can
prove

d 2
B (|ψψψ1〉, |ψψψ2〉) = 2(1− |〈ψψψ1|ψψψ2〉|) (2)

Considering inconvenience in norm calculating and con-
ventional processing, we can choose the following function
as a Lyapunov function:

V =
1

2

`
1− |〈ψψψf |ψψψ〉|2

´
(3)

Comparing (2) with (3), one knows that V can represent
the distance between final state |ψψψf 〉 and actual state |ψψψ〉 at
an arbitrary time. The physical meaning of (3) is evident:
|〈ψψψf |ψψψ〉|2 represents the transition probability from |ψψψ〉 into
|ψψψf 〉, and when state |ψψψ〉 is driven entirely into state |ψψψf 〉,
V = 0, and correspondingly dB

`|ψψψf 〉, |ψψψ〉
´

= 0.

3 Design of feedback control law

Given the following Schrödinger equation:

i~|ψ̇ψψ(t)〉 = H|ψψψ(t)〉, H = H0 + Hc, Hc =

rX

k=1

Hkuk(t) (4)

where H0 is the internal Hamiltonian, Hc is the interaction
Hamiltonian generated by the interaction of the external
controls and the system. Both H0 and Hk are independent
of time. uk(t) is a realizable, scalar, real-valued control
function.

For simplicity and considering the practical require-
ment(e. g. in quantum chemistry an eigenstate of the inner
Hamiltonian often need to be reached), one can assume that
final state |ψψψf 〉 is an eigenstate of the unperturbed system,
i. e.,

H0|ψψψf 〉 = λ0|ψψψf 〉 (5)

For V = 1
2

`
1 − 〈ψψψf | ψψψ〉〈ψψψ | ψψψf 〉

´
, the first-order time
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derivative of V is

V̇ =
1

2

`−〈ψψψf | ψ̇ψψ〉〈ψψψ | ψψψf 〉 − 〈ψψψf | ψψψ〉〈ψ̇ψψ | ψψψf 〉
´

=

−<ˆ〈ψψψ | ψψψf 〉〈ψψψf |
`− i

~
´`

H0 +

rX

k=1

Hkuk

´|ψψψ〉˜ =

− 1

~

rX

k=1

uk=
ˆ〈ψψψ|ψψψf 〉〈ψψψf |Hk|ψψψ〉

˜
(6)

It can be seen from (6) that the most reliable method is
to let each item of the summation sign nonnegative so that
V̇ ≤ 0. Consequently, the function form of uk may be of the
following characteristics: Kkfk(xk)xk > 0, where Kk > 0,
xk = =ˆ〈ψψψ|ψψψf 〉〈ψψψf |Hk|ψψψ〉

˜
, uk = Kkfk(xk). Evidently,

when the image of function yk = fk(xk) passes the origin
of plane xk-yk monotonically and lies in quadrant I or III,
the above requirement will be satisfied. At the same time,
fk(xk) = 0 iff xk = 0.

Analyzing (6), one can conclude that control uk can not
be used to solve the problems that an initial state is or-
thogonal to the final state and that final state |ψψψf 〉 is an
eigenstate of every Hk, (k = 1, · · · , r). Generally, it hardly
occurs to the latter case. Even if it occurs, in principle
one can solve it by adding some new controls. For the first
case, a simple approach is to make a suitable measurement
to change the state of the system. Then control uk can be
employed[3]. However, this will bring an extra disturbance
to the system. To solve this question, we take the following
steps.

Writing complex number 〈ψψψ|ψψψf 〉 in terms of its complex

exponential number 〈ψψψ|ψψψf 〉 = |〈ψψψ|ψψψf 〉| · ei∠〈ψψψ|ψψψf 〉 and sub-
stituting into (6) gives

V̇ = − 1

~

rX

k=1

uk · |〈ψψψ|ψψψf 〉| · =
ˆ
ei∠〈ψψψ|ψψψf 〉〈ψψψf |Hk|ψψψ〉

˜
(7)

Evidently, while the actual state |ψψψ〉 is not orthogonal to
the desired final state |ψψψf 〉(i. e. 〈ψψψ|ψψψf 〉 6= 0), the following

uk can also ensure V̇ ≤ 0.

uk = Kkfk

“
=
h
ei∠〈ψψψ|ψψψf 〉〈ψψψf |Hk|ψψψ〉

i”
, (k = 1, · · · , r) (8)

While the actual state |ψψψ〉 is orthogonal to the desired
final state |ψψψf 〉(i. e. 〈ψψψ|ψψψf 〉 = 0), the angle of the complex
〈ψψψ|ψψψf 〉 in (8) is unknown. In view of this, one can define

If 〈ψψψ|ψψψf 〉 = 0, then ∠〈ψψψ|ψψψf 〉 = 0◦ (9)

Thus uk in (8) need not equal zero and V̇ = 0 in (7).
It means that the actual state is turning around the final
state |ψψψf 〉 and while 〈ψψψ|ψψψf 〉 6= 0 is satisfied because of the
turn (the following Lemma 2 provides assurance to this

condition), the case that V̇ < 0 will appear. And then the
actual state will be driven towards the final state |ψψψf 〉. So,
(8) is selected as the final control field. Note that when
|ψψψ〉 = |ψψψf 〉 is satisfied, uk = 0 holds. It means that the
control field will disappear automatically when the final
state is reached.

4 Analysis and proof of stability

According to the function form of uk, one can obtain V̇ ≤
0, so the whole system is stable in Lyapunov sense at least.

The conditions of asymptotic stability will be analyzed and
proven as follows via LaSalle′s invariance principle. Before
analysis, two useful lemmas are given.

Lemma 1 With the control functions (8), if 〈ψψψ(0)|ψψψf 〉 6=
0, then 〈ψψψ(t)|ψψψf 〉 6= 0, (t > 0) holds.

Equation (3), conditions V̇ ≤ 0 and 〈ψψψ(0)|ψψψf 〉 6= 0 may
be used to prove the result.

Lemma 2 Suppose that 〈ψψψ(0)|ψψψf 〉 = 0 . If
rP

k=1

`
Kk ·

fk

`=ˆ〈ψψψf |Hk|ψψψ(0)〉˜´ · 〈ψψψf |Hk|ψψψ(0)〉´ 6= 0 is satisfied, then
〈ψψψ(t)|ψψψf 〉 6= 0, (t > 0) holds.

Proof. When the system runs for an infinitesimal time
interval, i. e. t = dt , one has |ψψψ(dt)〉 ≈ e−iHdt/~ ·
|ψψψ(0)〉 ≈ `

1 − iH
~ dt

´|ψψψ(0)〉. Furthermore, one can prove

〈ψψψf |ψψψ(dt)〉 6= 0 ⇐⇒
rP

k=1

`
uk(dt) · 〈ψψψf |Hk|ψψψ(0)〉´ 6= 0 .

Here, uk = lim
dt→0

Kkfk

`=ˆei∠〈ψψψ(dt)|ψψψf 〉〈ψψψf |Hk|ψψψ(dt)〉˜´ =

Kkfk

`=[〈ψψψf |Hk|ψψψ(0)〉]´ . And then according to Lemma
1, this lemma will be proved. ¤

Note that the condition in Lemma 2 is easily satisfied
in practice since both Kk and Hk have the degree of the
freedom of selection.

LaSalle′s principle says that the trajectories of the
closed-loop system converge to the largest invariant set con-
tained in V̇ = 0. So, the set of states such that V̇ = 0 need
to be characterized.

Proposition 1 With the control function (8), the follo-
wing three conditions are equivalent in the case that an
initial state isn’t orthogonal to the final state or that an
initial state is orthogonal to the final state and for t > 0
the condition in Lemma 2 is satisfied.

1) V̇ = 0 (10)

2) i~|ψ̇ψψ〉 = H0|ψψψ〉 (11)

3) 〈ψψψf |(λkI −Hk)|ψψψ〉 = 0, (λk ∈ R, k = 1, · · · , r)

(12)

Proof. As can be seen from (8), V̇ = 0 ⇐⇒
|〈ψψψ|ψψψf 〉| = 0 or =ˆei∠〈ψψψ|ψψψf 〉〈ψψψf |Hk|ψψψ〉

˜
= 0 ⇐⇒ |〈ψψψ|ψψψf 〉| ·

=ˆei∠〈ψψψ|ψψψf 〉〈ψψψf |Hk|ψψψ〉
˜

= 0 ⇐⇒ =ˆ〈ψψψ|ψψψf 〉〈ψψψf |Hk|ψψψ〉
˜

=
0 ⇐⇒ λk〈ψψψf |ψψψ〉 = 〈ψψψf |Hk|ψψψ〉, (λk ∈ R, 〈ψψψ|ψψψf 〉 6= 0) ⇐⇒
〈ψψψf |(λkI − Hk)|ψψψ〉 = 0, (λk ∈ R, k = 1, · · · , r). Thus,
1) ⇐⇒ 3) has been proved.

1) =⇒ 2) is proved as follows. From the previous
deducing process, condition 1) is equivalent to condition
λk〈ψψψf |ψψψ〉 = 〈ψψψf |Hk|ψψψ〉, (λk ∈ R, 〈ψψψ|ψψψf 〉 6= 0). Substitu-
ting this equation into (8) gives:

uk = Kkfk

`=ˆei∠〈ψψψ|ψψψf 〉λk〈ψψψf |ψψψ〉
˜´

=

Kkfk

`
λk|〈ψψψf |ψψψ〉|=

ˆ
ei∠〈ψψψ|ψψψf 〉ei∠〈ψψψf |ψψψ〉˜´ = 0

And then by substituting uk into (4), one obtains i~|ψψψ〉 =
H0|ψψψ〉.

2) =⇒ 1). Comparing (8) with (4), one has
rP

k=1

Hkuk|ψψψ〉 = 0 =⇒ 〈ψψψf |
rP

k=1

Hkuk|ψψψ〉 =
rP

k=1

uk〈ψψψf |Hk|ψψψ〉

= 0 =⇒
rP

k=1

ukei∠〈ψψψ|ψψψf 〉〈ψψψf |Hk|ψψψ〉 = 0. Since uk is a real
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scalar function,
rP

k=1

uk ·|〈ψψψ|ψψψf 〉|·=
ˆ
ei∠〈ψψψ|ψψψf 〉〈ψψψf |Hk|ψψψ〉

˜
= 0

holds, i. e. V̇ = 0. So, 1) ⇐⇒ 2). ¤
The above three conditions characterize the state set

such that V̇ = 0 at some specific evolving moment. Ob-
viously, these conditions can not explain the asymptotic
stability of the system. In other words, it should be con-
sidered whether V̇ = 0 holds after the moment. From this
point of view, one can find the largest invariant set of the
closed-loop system.

Assume that V̇ (t0) = 0 at time t0. The case that state
|ψψψ〉 does not evolve towards target state |ψψψf 〉 means that

V̇ (t1) = 0 at time t1 = t0 + dt, V̇ (t2) = 0 at time t2 =
t1 + dt, · · · . At the same time, state evolves freely starting
from state |ψψψ(t0)〉. By linearizing the unitary operator of
the state at every time, one can obtain in turn. (setting
~ = 1)

t0 : =ˆ〈ψψψ(t0)|ψψψf 〉〈ψψψf |Hk|ψψψ(t0)〉
˜

= 0

t1 : =ˆ〈ψψψ(t1)|ψψψf 〉〈ψψψf |Hk|ψψψ(t1)〉
˜

= 0

⇔ =ˆ〈ψψψ(t0)|
`
I + iH0dt

´|ψψψf 〉〈ψψψf |Hk

`
I − iH0dt

´|ψψψ(t0)〉
˜

≈ =ˆi〈ψψψ(t0)|ψψψf 〉〈ψψψf |
ˆ
H0, Hk

˜|ψψψ(t0)〉
˜
dt = 0

⇔ =ˆi〈ψψψ(t0)|ψψψf 〉〈ψψψf |
ˆ
H0, Hk

˜|ψψψ(t0)〉
˜

= 0

Similarly,

t2 : =ˆi2〈ψψψ(t0)|ψψψf 〉〈ψψψf |
ˆ
H0,

ˆ
H0, Hk

˜˜|ψψψ(t0)〉
˜

= 0

· · · · · ·
Set

ˆ
H

(n)
0 , Hk

˜
=
ˆ
H0,

ˆ
H0, · · · ,

ˆ
H0| {z }

n times

, Hk

˜˜˜
, the above

equations read

=
h
in〈ψψψ(t0)|ψψψf 〉〈ψψψf |[H(n)

0 , Hk]|ψψψ(t0)〉
i

= 0, (n = 0, 1, 2, · · · )
(13)

In H0 representation, H0 is diagonal. One may let H0 =
diag[λ1 , λ2 , · · · , λN ] and |ψψψ(t0)〉 = [ψψψ

1
,ψψψ

2
, · · · ,ψψψ

N
]T. As-

suming H0 is not degenerate, then N eigenstates of
H0 may be denoted as [1, 0, · · · , 0]T, [0, 1, · · · , 0]T, · · · ,
[0, 0, · · · , 1]T. For convenience, one can always assume that

|ψψψf 〉 = [0, 0, · · · , 1]T. Then, the commutator
ˆ
H

(n)
0 , Hk

˜
reads
ˆ
H

(n)
0 , Hk

˜
=
`
(λi − λj )

n(Hk)ij

´
, (k = 1, · · · , r) (14)

Substituting into (13), one has

=
h
inψψψ∗

N

NX
j=1

(λN−λj )
n(Hk)Njψψψj

i
= 0, (k = 1, · · · , r) (15)

In typical multiple-level systems, Hk has its diagonal
entries zero. Accordingly, for n = 0, (13) becomes

=ˆψψψ∗
N

N−1P
j=1

(Hk)Njψψψj

˜
= 0. Set

ξ =
ˆ
(Hk )N1ψψψ1

, (Hk )N2ψψψ2
, · · · , (Hk )N,N−1ψψψN−1

˜T

Λ = diag
ˆ
λN − λ1 , λN − λ2 , · · · , λN − λN−1

˜

M =

2
666664

1 1 ··· 1

(λ
N
−λ1 )

2
(λ

N
−λ2 )

2 ··· (λ
N
−λ

N−1 )
2

...
...

...
...

(λ
N
−λ1 )

2(N−2)
(λ

N
−λ2 )

2(N−2) ··· (λ
N
−λ

N−1 )
2(N−2)

3
777775

For n = 0, 2, 4, · · · , (13) may read = (ψψψ∗NMξ) = 0. Since
M is a non-singular real matrix, this equation is equivalent
to M= (ψψψ∗Nξ) = 0, i.e.

= `ψψψ∗
N

ξ
´

= 0 (16)

For n = 1, 3, 5, · · · , (13) may read < (ψψψ∗NMΛξ) = 0.
Similarly, one can obtain

< `ψψψ∗
N

ξ
´

= 0 (17)

Considering (16) and (17), one has

ψψψ∗
N

ξ = 0 (18)

According to Lemmas 1 and 2, for t0 > 0, 〈ψψψ(t0)|ψψψf 〉 6= 0,
i. e. ψψψ∗N 6= 0. Substituting into (18), one can obtain

ξ = 0 (19)

Generally, (19) may read

〈ψψψf |Hk|ψψψ(t0)〉 = 0, (k = 1, · · · , r) (20)

Based on the above reasoning, we obtain the following
theorem.

Theorem 1 Consider system (4) with the control field (8).
If the spectrum of H0 is not degenerate, then the largest
invariant set of the closed-loop system is S2N−1TE,
E = {|ψψψ〉 | 〈ψψψf |Hk|ψψψ〉 = 0, k = 1, · · · , r}. If all the so-
lutions of 〈ψψψf |Hk|ψψψ〉 = 0, (k = 1, · · · , r) are within the
same equivalence class, then the closed-loop system will be
asymptotically stable.

5 Application to a spin-1/2 par-
ticle system

There are many advantages in a spin-1/2 particle

system[5]. In order to illustrate the effectiveness of the
method proposed in this paper, here the system simula-
tion experiment will be given. Suppose that the spin-1/2
particle system is controlled only by one field and the con-
trol function u(t) varies the electromagnetic field in the y

direction[6]. The spin is discussed in σz representation. The
Schrödinger equation of the system is

i~|ψψψ(t)〉 =
`
H0 + H1u1(t)

´|ψψψ(t)〉

where H0 = σz =

»
1 0
0 −1

–
, H1 = σy =

»
0 −i
i 0

–
,

setting ~ = 1.
According to linear superposition principle, to perform

the simplest logic NOT-gate operation (exchanging proba-
bilities), state |ψψψ〉 must be driven to switch between two
eigenstates |0〉 = [1, 0]T and |1〉 = [0, 1]T. Now assume that
initial state |ψψψ(0)〉 = [1, 0]T and final state |ψψψf 〉 = [0, 1]T.
When K1 > 0 in (8), the condition in Lemma 2 is satisfied.
Therefore, the control field (8) is fit for this system.

For this example, one has 〈ψψψf |H1|ψψψ〉 = 0, i. e. 〈1|σy|ψψψ〉 =
0. This equation admits the only solution |ψψψ〉 = |1〉(without
regard to the global phase). According to the Theorem 1,
the system is asymptotically stable.

Setting |ψψψ〉 = [c1, c2]
T and choosing the simple sign func-

tion as the control function for the sake of easy realization,
one has

u1 = K1sign
`=ˆei∠〈ψψψ|ψψψf 〉〈ψψψf |H1|ψψψ〉

˜´
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Fig. 1 Probability of the state evolution

Fig. 2 Lyapunov function during the state evolution

where K1 > 0. Apparently, xsign(x) ≥ 0, the requirement
for control field is satisfied. And at the same time, the
control function has the form of simple bang-bang control.
With K1 = 1, time step length 4t = 0. 01sec., and con-
trol time t = 2. 2sec., the simulation results are shown in
Figs. 1–3.

According to Fig. 1, at an arbitrary moment |c1|2+|c2|2 =
1 holds, i. e. probability conservation. Based on Fig. 2, one
can draw the conclusion: at tf = 2. 2sec., basically V = 0
is satisfied and state transfer is finished.

After repetitious experiments, the following rules are ob-
tained: When parameter K1 is fixed, tf (time when the
equivalence class of the final state is reached) does not vary
with time step length 4t and decreases with parameter K1

increasing.

6 Conclusion

By constructing the distance between an actual state and
the desired state as a Lyapunov function, this paper gives
the whole design process of a type of controller with state
feedback of a quantum system, and deals with the prob-
lem that an initial state is orthogonal to the final state,
and fully analyzes the asymptotic stability of the closed-

Fig. 3 Control value of the closed-loop system

loop system and gives the corresponding judgement theo-
rem. Since the controlled state is obtained by Schrödinger
equation in advance, and the control law is designed before
implementing the experiment, such control strategy can be
called as “program control with state feedback”.
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