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A Low-dimensional Illumination Space Representation of
Human Faces for Arbitrary Lighting Conditions

HU Yuan-Kui1 WANG Zeng-Fu1

Abstract The proposed method for low-dimensional illumination space representation (LDISR) of human faces can not only
synthesize a virtual face image when given lighting conditions but also estimate lighting conditions when given a face image. The
LDISR is based on the observation that 9 basis point light sources can represent almost arbitrary lighting conditions for face
recognition application and different human faces have a similar LDISR. The principal component analysis (PCA) and the nearest
neighbor clustering method are adopted to obtain the 9 basis point light sources. The 9 basis images under the 9 basis point
light sources are then used to construct an LDISR which can represent almost all face images under arbitrary lighting conditions.
Illumination ratio image (IRI) is employed to generate virtual face images under different illuminations. The LDISR obtained from
face images of one person can be used for other people. Experimental results on image reconstruction and face recognition indicate
the efficiency of LDISR.
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1 Introduction

Illumination variation is one of the most important fac-
tors which reduce significantly the performance of face
recognition system. It has been proved that the variations
between images of the same face due to illumination are
almost always larger than image variations due to change
in face identity[1]. So eliminating the effects due to illumi-
nation variations relates directly to the performance and
practicality of face recognition system.

To handle face image variations due to changes in ligh-
ting conditions, many methods have been proposed thus
far. Generally, the approaches to cope with variation in
appearance due to illumination fall into three kinds[2]:
invariant features, such as edge maps, images filtered
with 2D Gabor-like functions, derivatives of the gray-
level image, images with Log transformations and the re-
cently reported quotient image[3]and self-quotient image[4];
variation-modeling, such as subspace methods[5∼7], illumi-
nation cone[8∼10]; and canonical forms, such as methods in
[11, 12].

This paper investigates the subspace methods for illumi-
nation representation. Hallinan et al.[5,6] proposed an eigen
subspace method for face representation. This method
firstly collected frontal face images of the same person un-
der different illuminations as training set, and then used
principal component analysis (PCA) method to get the
eigenvalues and eigenvectors of the training set. They
concluded that 5 ± 2 eigenvectors would suffice to model
frontal face images under arbitrary illuminations. The ex-
perimental results indicated that this method can recon-
struct frontal face images with variant lightings using a
few eigenvectors. Different from Hallinan, Shashua[7] pro-
posed that under the assumption of Lambertian surface,
three basis images shot under three linearly independent
light sources could reconstruct frontal face images under
arbitrary lightings. This method was proposed to discount
the lighting effects but not to explain lighting conditions.
Belhumeur et al.[8,9] proved that face images with the same
pose under different illumination conditions form a convex
cone, called illumination cone, and the cone can be repre-
sented in a 9 dimensional space[10]. This method performs
well but it needs no less than seven face images for each
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person to estimate the 3D face shape and the irradiance
map. Basri & Jacobs [13] and Ramamoorthi[14,15] indepen-
dently applied the spherical harmonic representation and
explained the low dimensionality of differently illuminated
face images. They theoretically proved that the images of a
convex Lambertian object obtained under a wide variety of
lighting conditions can be approximated accurately with a
9D linear subspace, explaining prior empirical results[5∼7].
However, both of them assumed that the 3D surface normal
and albedo (or unit albedo) were known. This assumption
limits the application of this algorithm.

The above research results theoretically and empirically
indicate that frontal face images obtained under a wide
variety of lighting conditions can be approximated accu-
rately with a low-dimensional linear subspace. However,
all the above subspace methods construct a subspace from
training images for each human face, which is not only cor-
responding to the illumination conditions but also to the
face identity. The subspaces, in which the intrinsic infor-
mation (shape and albedo) and the extrinsic information
(lightings) are mixed, are not corresponding to the lighting
conditions distinctly. Otherwise, a large training image set
would be needed in the learning stage and 3d face model
might be needed.

In this paper, a low-dimensional illumination space rep-
resentation (LDISR) of human faces for arbitrary lighting
conditions is proposed, which can handle the problems that
can not be solved well in the existing methods to a certain
extent. The key idea underlying our model is that any
lighting condition can be represented by 9 basis point light
sources. The 9 basis images under the 9 basis point light
sources construct an LDISR, which separates the intrinsic
and the extrinsic information and can both estimate ligh-
ting conditions when given a face image and synthesize a
virtual face image when given lighting condition combin-
ing with the illumination ratio image (IRI) method. The
method in [10] and the proposed method in this paper have
some similarities, but they have some essential differences
also. The former needs to build one subspace for each per-
son, and the latter only needs to build one subspace for one
selected person. Furthermore, the 9D illumination space
built in the former case is not corresponding to the lighting
conditions distinctly, and in our case once the correspon-
ding illumination space is built, it can be used to generate
virtual frontal face images of anybody under arbitrary illu-
minations by using the warping technology and IRI method
developed. These virtual images are then used for the pur-
pose of both training and recognition. The experiments on
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Fig. 1 The positions corresponding to the dominant point
light sources

Yale Face Database B indicate that the proposed method
can improve the performance of face recognition efficiently.

2 Constructing the LDISR

Since any given set of lighting conditions can be exactly
expressed as a sum of point light sources, a surface patch′s
radiance illuminated by two light sources is the sum of the
corresponding radiances when the two light sources are ap-
plied separately. More detail was discussed in [5]. In this
section, PCA and clustering based method are adopted to
find the basis point light sources, which are able to repre-
sent arbitrary lighting conditions.

The needed 3D face model was obtained using a 3D ima-
ging machine 3DMetrics TM. Then the 3D face model ob-
tained was used to generate the training images. Move
a floodlight by increments of 10 degrees to each position
(θi, ϕj) to generate image ppp(θi, ϕj), where θ is the eleva-
tion and ϕ is the azimuth. Typically ϕ ∈ [−120◦, 120◦]
and θ ∈ [−90◦, 90◦]. Totally, 427 images were generated,
denoted as {pppk, k = 1, · · · , 427}.

We use PCA to find the dominant components for the
finite set of images. Since the PCA is used on the images
of the same human face with different lighting conditions,
the dominant eigenvectors do not reflect the facial shape
but the lighting conditions. So the above eigenvectors can
be used to represent lighting conditions. In this paper, the
lighting subspace is constructed not using the eigenvectors
directly but the light sources corresponding to the eigen-
vectors.

According to the ratio of the corresponding eigen-
value to the sum of all the eigenvalues, the first 60
eigenvalues containing the 99.9% energy were selected.
And the 60 corresponding eigenvectors were selected as
the principal components. Denote the first 60 eigenvectors
as {uuui, i = 1, · · · , 60}. For the ith eigenvector uuui, the
corresponding training image is pppj , where uuui and pppj satisfy

uuuT
i pppj = max

k∈{1,··· ,427}
{uuuT

i pppk} (1)

The positions of the 60 dominant point light sources are
shown in Fig.1.

By investigating the positions of the dominant point
light sources, it can be found that the dominant point
light sources are distributed by certain rules. They are
distributed almost symmetrically and cluster together in

regions such as the frontal, the side, the below, and the
above of head. The nearest neighbor clustering method is
adopted here to get the basis light positions. Considering
the effects of point light sources in different elevation and
azimuth, some rules are employed for clustering:

1. When the elevation is below −60◦ or above 60◦, clus-
tering is done based on the differences of values in
elevation.

2. When the elevation is in range [−60◦, 60◦] , clustering
is done based on the Euclidian distances in space.

Fig. 2 The clustering result of the first 60 eigenvectors.

By adopting the nearest nerghbor clustering method, the
60 dominant light sources can be classified into 9 classes.
The clustering result is shown in Fig.2. When the geometric
center of each class is regarded as the basis position, the 9
basis light positions are shown in Table 1.

From the above procedure, it is known that point light
sources in the 9 basis positions are dominant and princi-
pal components in the lighting space, and they can express
arbitrary lighting conditions. The 9 basis images obtained
under the 9 basis point light sources respectively construct
a low-dimensional illumination space representation (LD-
ISR) of human face, which can express frontal face images
under arbitrary illuminations. Because different human
faces have similar 3D shapes [3,16], the LDISR of different
faces is also similar. As an approximation, it can be as-
sumed that different persons have the same LDISR, which
has been discussed in [17].

Denote the 9 basis images obtained under 9 basis lights
are Ii, i = 1, · · · , 9, the LDISR of human face can be de-
noted as A = [I1, I2, · · · , I9]. The face image under lighting
sx can be expressed as

Ix = Aλλλ (2)

where λλλ = [λ1, λ2, · · · , λ9]
T ,0 ≤ λi ≤ 1 is the lighting pa-

rameters of image Ix and can be calculated by minimizing
the energy function E(λλλ):

E(λλλ) = ‖Aλλλ− Ix‖2 (3)

So we can get
λλλ = A+Ix (4)

where
A+ = (ATA)−1AT (5)
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Table 1 Positions of the 9 basis light sources

light 1 2 3 4 5 6 7 8 9

Elevation θ (degree) 0 17.5 25.7 36 44 68.6 -33.3 -35 -70
Elevation ϕ (degree) 0 -47.5 44.4 -108 88 -3 85 -95 22.5

(a) Input image (b) ASM alignment (c) Warped mean shape

(d) The virtual images generated under different lightings

Fig. 3 Generating virtual images using the 9D illumination
space and the IRI

Given an image of human face for learning images, the
lighting parameters λλλ can be calculated by (4), and the
virtual face images can be generated by (2) by using the
lighting condition λλλ. In order to use the LDISR learned
from one human face to generate virtual images of other hu-
man faces, the illumination ratio image (IRI) based method
is adopted in next section.

3 Generating virtual images u-
sing illumination ratio-image
(IRI)

Denote the light sources as si, i = 0, 1, 2, · · · , respec-
tively, where s0 is the normal light source, and Iji the image
under light source si for the person with index j. The IRI
is based on the assumption that a face is a convex surface
with a Lambertian function. A face image can be described
as

I(u, v) = ρ(u, v)nnn(u, v)·lll (6)

where, ρ(u, v) is the albedo of point (u, v), nnn(u, v) is the
surface normal at (u, v), and lll is the direction of light.

Different from the quotient image[3], illumination ratio
image is defined as follows[11,18,19,20].

Ri(u, v) =
Iij(u, v)

I0j(u, v)
(7)

From (6) and (7), we have

Ri(u, v) =
ρj(u, v)nnnT(u, v)·sssi

ρj(u, v)nnnT(u, v)·sss0
=

nnnT(u, v)·sssi

nnnT(u, v)·sss0
(8)

Equation (8) shows that the IRI can be determined only
by the surface normal of a face and the light sources, which

is independent of specific albedo. Since different human
faces have the similar surface normal[3,16], the IRIs of dif-
ferent people under the same lighting condition can be con-
sidered to be the same. In order to eliminate the effect due
to shapes of different faces, the following procedure should
be done. Firstly, all faces can be warped to the same shape,
and then the IRI is computed. In this paper, an ASM based
method is used to perform the face alignment and all faces
will then be warped to the predefined mean shape. After
the procedure, all faces will have a quite similar 3D shape.
That is to say, with the same illumination, IRI is the same
for different people. The corresponding face image under
arbitrary lighting condition can be generated from the IRI.
Finally the face image is warped back to its original shape.

From (7), we have

Iij(u, v) = I0j(u, v)Ri(u, v) (9)

Equation (9) means that, given the IRI under si and the
face image under the normal lighting, we can relight the
face under sssi.

The face relighting problem can be defined as follows.
Given one image, Ia0 , of people A under the normal ligh-
ting sss0, and one image, Ibx , of another people B under
some specific lighting sssx, how to generate the image, Iax,
of people A under lighting SSSx. Unlike [11, 18], the IRI
under each lighting is unknown in this paper .

Given image Ibx, the IRI under lighting sssx can be calcu-
lated using the LDISR described in Section 2. Assume the
LDISR, A , is learned from images of people M. The ligh-
ting parameter, λλλx, of image Ibx is solved by the least-
square method

ATAλλλx = ATIbx (10)

Aλλλx is the image of people M under lighting sx, denoted
as Imx. The IRI under lighting sssx can be calculated by

Rx(u, v) = Ixm(u, v)/I0m(u, v) (11)

where I0m is the image of people M under normal lighting.
After the IRI under lighting sssx is calculated, the face image
of people A can be relit under lighting sssx by Ixa(u, v) =
I0a(u, v)Rx(u, v).

In general, given face image I0y of arbitrary face Y under
lighting sss0, face image of Y under arbitrary lighting can be
generated by the following procedure:

1. Detect face region I0y and align it using ASM;

2. Warp I0y to the mean shape T0;

3. Relight T0 using the IRI under lighting sssk: Tk(u, v) =
T0(u, v)Rk(u, v) ;

4. Reverse-warp the texture Tk to its original shape to
get the relit image Iky

Fig. 3 shows some relighting results on Yale Face
Database B. In the experiments, the LDISR was con-
structed by the nine basis images of people DZF(not in-
cluded in Yale Face Database B). For each image under
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Fig. 4 Results of image reconstruction. a) Original images. b) Images reconstructed by 5-eigenimages. c) Images reconstructed
by 3-basis images. d) Images reconstructed by the LDISR. e) The differences corresponding to the images in b). f) The differences
corresponding to the images in c). g) The differences corresponding to the images in d).

normal lighting in Yale Face Database B, the virtual im-
ages under other 63 lightings were generated.

It should be highlighted that in the original IRI
method[11,18], to calculate the IRI, the image under nor-
mal lighting and the image under specific lighting must be
of the same people. The LDISR based method proposed in
this paper breaks this limitation and the face image used
in the algorithm can be of different people. In addition,
when no face image under normal lighting is available, the
virtual image can be generated by using the given λx from
(2). And the IRI will then be calculated according to the
virtual image.

4 Experimental results

4.1 2D image reconstruction
The experiment was based on the 427 frontal face images

under different lightings described in Section 2. In this
experiment, three image reconstruction methods were im-
plemented: 5-eigenimages representation method proposed
by Hallinan[5], a linear combination of 3-basis images pro-
posed by Shashua[7], and the LDISR based method. The
face images under different lightings were reconstructed and
the performances were evaluated by the differences between
the original and the reconstructed images.

According to [5], PCA was adopted to train the 427
images and the eigenvectors corresponding to the first 5
eigenvalues were selected to construct face illumination sub-
space I. According to [7], the selected 3 basis images under
three point light sources respectively were used to construct
face illumination subspace II. The LDISR constructed by
the nine basis images was the face illumination subspace
III. The total 427 face images were reconstructed by the
three face illumination subspace, respectively.

Some original images are shown in Fig. 4 a), and the
images reconstructed using face illumination I, II, III are
shown in Fig. 4 b), c), and d), respectively. The corre-
sponding differences are shown in Fig. 4 e), f), and g),
respectively.

It can be concluded from Fig.4 that the performances of
the 5-eigenimages representation method and the LDISR
are comparative, and they are both better than that of the
3-basis images representation method. When the variation
due to lighting condition is large (Fig. 4 c), columns 2, 3,
and 4), the differences between the original and the recon-
structed images are very large (Fig. 4 f), columns 2, 3, and
4), especially when there are shadows in face images.

To evaluate more rigorously, the fit function defined in
[5] was adopted. The quality of the reconstruction can be
measured by the goodness of the fit function:

ε = 1− ‖ Irec − Iin ‖2
‖ Iin ‖2 (12)

where Irec is the reconstructed image, and Iin is the original
image. The values of the fit function corresponding to all
the 427 reconstructions by three methods are shown in Fig.
5.

From Fig. 5, it can be seen that the fitness of images
reconstructed by the 5-eigenimages representation method
and the LDISR to the original image is very good, while
the 3-basis images representation method is not so good.
When the variation in lighting is larger (corresponding to
the abscissas are 50 and 280 in Fig. 5) the performance of
the LDISR is better than that of the 5-eigenimages repre-
sentation method.

Besides, the 5-eigenimages and the 3-basis images rep-
resentation methods need multiple images of each person,
and train one model for each person. However, the LDISR
trains one model using 9 basis images of one person, and
can be used for other person by warping technique.

4.2 Face recognition with variant lightings
based on virtual images

In this experiment, the LDISR and the IRI method were
combined to generate virtual face images, which were used
for face recognition with variant lightings. The experiments
were based on the Yale Face Database B[10]. 64 frontal
face images of each person under 64 different lightings were
selected, and there were 640 images of 10 persons. The
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Fig. 5 The values of fit function corresponding to the
reconstruction by three methods.

images have been divided into five subsets according to the
angles the light source direction makes with the camera
axis[10]: Subset 1(up to 12◦), subset 2 (up to 25◦), subset
3(up to 50◦), subset 4(up to 77◦), and subset 5(others).

Correlation, PCA, and LDA methods were adopted for
face recognition. For correlation method, the image under
normal lighting of each person was the template image and
the rest 63 images of each person were test images. For
PCA and LDA methods, three images of each person (of
which the angles the light source direction makes with the
camera axis are the smallest) were training images, and the
rest were test images.

The LDISR was constructed by the nine basis images of
people DZF (not included in Yale Face Database B). For
each frontal face image in Yale Face Database B, the virtual
images corresponding to the other 63 lightings were gener-
ated using the LDISR and IRI. In order to decrease the
effect of illumination, we used gamma intensity correction
(GIC). Here γ = 4.

The three recognition methods were performed on the
original images, images with GIC and virtual images
with GIC. The results are shown in Fig. 6, where
correlation, PCA and LDA correspond to the results
for the original images, GIC correlation, GIC PCA, and
GIC LDA correspond to the results for the images with
GIC, and GIC virtual correlation, GIC virtual PCA, and
GIC virtual LDA correspond to the results for the virtual
images with GIC.

Fig. 6 illustrates that the recognition accuracy for the
virtual images is improved greatly. When the variations
due to illumination are larger, the improvement is greater.
The recognition rates of correlation, PCA, and LDA on
the virtual images are 87.24%, 87.99%, and 90.5%, respec-
tively. For subset 1, subset 2, and subset 3, in which the
variations due to illumination are small, the performance
of three recognition methods are comparable, while in sub-
set 4 and subset 5, LDA performs better. This indicates
that the classifying ability of LDA is better than others.

In the future, we will validate the proposed method on
larger face database.

5 Conclusion

This paper proposes a method to construct an LDISR u-
sing the 9 basis images under the 9 basis point light sources.
The LDISR can represent almost all face images under ar-

Fig.6 The results of Face recognition on Yale face Database B

bitrary lighting conditions. The LDISR combined with the
IRI is corresponding to the lighting conditions distinctly,
and can estimate lighting conditions when given a face im-
age and synthesize a virtual face image when given lighting
conditions.

The experiments of reconstruction illustrate that the
representation ability of LDISR is better than the 5-
eigenimages and 3-basis images representation methods.
The experiments on Yale Face Database B confirm the abi-
lity of LDISR in synthesizing a virtual face image and in-
dicate that the virtual face images can improve greatly the
accuracy of face recognition under variant lightings.

The main advantage of the proposed model is that it
can be used to generate virtual images of anybody only
from 9 basis face images of one person. And at the same
time, the method need not know the lighting conditions or
pre-calculate the IRI.
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