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A Model Predictive Control Based Distributed
Coordination of Multi-microgrids in Energy Internet

Yan Zhang1 Tao Zhang1 Rui Wang1 Yajie Liu1 Bo Guo1

Abstract This paper focuses on the development of optimization-based distributed scheduling strategies for the coordination
of an energy internet (EI) with multi-microgrids with consideration of forecast uncertainties. All microgrids have flexible loads,
schedulable loads and critical loads; some microgrids have distributed generators, such as micro-turbines, wind turbines, photovoltaic
panels; besides, a few microgrids have energy storage devices, such as battery storage. Each microgrid is considered as an individual
entity and has its individual objective, these objective functions of microgrids are formulated by mixed integer programming (MIP)
models. A game theory based parallel distributed optimization algorithm is proposed to coordinate the competitive objectives of the
microgrids with only a little information interaction. A model predictive control (MPC) framework which integrates the distributed
optimization algorithm is developed to reduce the negative impacts introduced by the uncertainties of the EI. Simulation results
show that our method is flexible and efficient.

Key words Energy internet (EI), game theory, model predictive control (MPC), multi-microgrids, parallel optimization

Citation Yan Zhang, Tao Zhang, Rui Wang, Yajie Liu, and Bo Guo. A model predictive control based distributed coordination
of multi-microgrids in energy internet. Acta Automatica Sinica, 2017, 43(8): 1443−1456

DOI 10.16383/j.aas.2017.e150300

Nomenclature

A. Index

t time index

i microgrid index

k iteration step index

a index of schedulable appliances in microgrid i

B. Constants

M set of microgrids in the EI system (i ∈ M)

T number of periods for the control horizon (t ∈ T )

N
a preset iteration coefficient used for accelerating the

convergence speed

Ai,s set of schedulable appliances in microgrid i (a ∈ A)

∆t time interval of each period (h)

Pmax
i,l , Pmax

i,O

the rated power that can be purchased/sold from/to

the utility for microgrid i (kW)

Emax
i,E , Emin

i,E

the maximum, minimum available energy

level of the ESD unit in microgrid i (kWh)

Einit
i,E

the initial energy level of ESD unit in

microgrid i (kWh)

Pmax
i,Ec, Pmin

i,Ec

the maximum, minimum charging power of

the ESD unit in microgrid i (kW)

Pmax
i,Ed, Pmin

i,Ed

the maximum, minimum discharging power

of the ESD unit in microgrid i (kW)

ηi,Ed, ηi,Ec
discharging, charging efficiency of the ESD

unit in microgrid i (%)

εi,E
self-discharging rate of the ESD unit in

microgrid i (kWh/h)

cO&M
i,E

operation and maintenance cost of the ESD

unit in microgrid i ($)

cswitch
i,E

status switch cost of the ESD

unit in microgrid i ($)

Pmax
i,DDG, Pmin

i,DDG
the maximum, minimum allowed power output

of the DDG unit in microgrid i (kW)

Tdown
i,DDG, Tup

i,DDG
the minimum down, operation time of the

DDG unit in microgrid i (h)
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cdown
i,DDG, cup

i,DDG
shut-down, start-up cost of the

DDG unit in microgrid i ($)

Ri,DDG
the maximum ramp down/up power rate

of the DDG unit in microgrid i (kW)

c1
i,DDG, c2

i,DDG
cost coefficients of the

DDG unit in microgrid i ($/kW2, $/kW)

α1, α2
cost coefficients of the utility

generator ($/kW2, $/kW)

lmin
i,a , lmax

i,a

the minimum, maximum load demand of

appliance a for microgrid i (kW)

lmax
i,B

rated capacity of the critical loads

in microgrid i (kW)

Pmax
i,P V

rated power capacity of the PV plant

in microgrid i (kW)

Pmax
i,wind

rated power capacity of the wind farm

in microgrid i (kW)

T start
i,a , T end

i,a

start time, deadline of appliance a

for microgrid i (h)

Ei,a

total energy demand of the appliance a

for microgrid

i (kWh)

Di spinning reserve ratio for microgrid i (%)

ξ1, ξ2, ξ3, ξ4
preset stopping criteria for the distribution

optimization algorithm

θmax
i,F

the maximum curtailment ratio of flexible

loads in microgrid i (%)

ccurt
i,F

penalty cost coefficient for curtailing flexible

loads in microgrid i

Pmax
u , Pmin

u

the maximum, minimum power limit

of the utility generator (kW)

C. Parameters

Pi,wind(t)
power output of the wind turbines

in microgrid i at time t (kW)

Pi,P V (t)
power output of the PV plant

in microgrid i at time t (kW)

li,B(t)
demand of the critical loads

in microgrid i at time t (kW)

li,F (t)
demand of the flexible loads

in microgrid i at time t (kW)

pu(t)
base electricity price for the utility

company ($/kWh)

pi,b(t), pi,s(t)
buying, selling electricity price

for microgrid i at time t ($)
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pi,b(t), pi,s(t) buying, selling price coefficient

D. Variables

Pi,l(t), Pi,O(t)
power imported/exported from/to the utility

for microgrid i at time t (kW)

δi,l(t), δi,O(t)
purchasing, selling power status

for microgrid i at time t (0/1)

Pi,Ec(t), Pi,Ed(t)
charging, discharging power rate of the

ESD unit for microgrid i at time t (kW)

δi,Ec(t), δi,Ed(t)
charging, discharging status of the

ESD unit for microgrid i at time t (0/1)

Ei,E(t)
energy level of the ESD unit for microgrid

i at time t (kWh)

Pi,DDG(t)
power output of the DDG unit for

microgrid i at time t (kWh)

δi,DDG(t)
operation status of the DDG unit for

microgrid i at time t (0/1)

θi,F (t)
curtailment ratio of the flexible loads for

microgrid i at time t (%)

li,a(t)
load demand of appliance a for microgrid

i at time t (kW)

1 Introduction

The energy internet (EI) is an interesting concept for
integrating more distributed energy resources, improving
power quality and reliability, and reducing greenhouse gas
emissions [1]−[3]. This grid includes advanced digital me-
ters, distribution automation, communication systems and
distributed energy resources [4]−[7]. Since more kinds and
amounts of devices are integrated and much more data are
needed to be collected and analyzed, the optimization and
scheduling of the energy Internet (EI) becomes more com-
plex than the traditional power system. To manage and
operate such a complex infrastructure efficiently and reli-
ably, a unit of the grid, known as microgrid (or energy local
network) [8], [9], has been emerged as a promising platform
for the EI to integrate and coordinate a large number of dis-
tributed energy resources in a decentralized way [10], [11].

A microgrid or an energy local network is a relatively
small-scale localized power system that can distribute gen-
eration and load demand in a small geographic area more
flexibly and reliably. It typically includes a cluster of dis-
patchable distributed generators (DDGs) such as micro-
turbines and diesel generators, non-dispatchable renewable
energy resources (RERs) such as wind turbines and photo-
voltaic panels, energy storage devices (ESDs) such as bat-
tery storage, various types of smart loads such as heat-
ing, ventilating, air conditioning and washing machine, and
some other onsite electric components [12]. It can be op-
erated in either grid connected mode or in islanded mode
when there are external faults or to gain economic advan-
tages.

As an important element of the EI, many studies have
been made in the literature on the energy management of
the microgrid. Albadi and Saadany [13] present a summary
of demand response in deregulated electricity markets and
some utilities’ experiences with different demand response
programs are discussed. Chia et al. [14] discuss the de-
mand response management with multiple utility compa-
nies, and a two-level non-cooperative game model is pro-
posed to express the interaction between utility compa-
nies and residential users. Su and Wang [15] review the
energy management systems (EMSs) in microgrid opera-
tion. Chen et al. [16] propose an model predictive control

(MPC)-based load scheduling approach for a home micro-
grid which considers electricity price uncertainties. Parisio
et al. [17] provide a comprehensive model of microgrid and
an MPC-based approach to efficiently optimize microgrid
operation with considering time-varying requests and op-
eration constraints. Zhu and Hug [18] present a stochastic
approach to optimally dispatch the power of a microgrid.
Su et al. [19] propose an MPC-based power dispatch ap-
proach with considering plug-in electric vehicles.

Due to the EI can be considered as the Smart Grid 2.0
[20], the advanced technologies can be utilized for the future
EI system. Tang et al. [21]−[23] propose a goal represen-
tation adaptive dynamic programming (GRADP) method
to control and operate a smart grid. Amini et al [24] in-
vestigate two decomposition methods for solving the op-
timization problem in security constrained economic dis-
patch (SCED) of the power system. The advantages and
drawbacks of each method are discussed in terms of ac-
curacy and information privacy. Deng et al. [25] discuss
a MPC based bilinear model to obtain optimal set-points
to satisfy the campus cooling demands and minimize the
daily electricity cost for a campus central plant which is
equipped with a bank of multiple electrical chillers and a
thermal energy storage.

Furthermore, the coordinated control of the microgrids,
independent consumers and utility companies in an EI sys-
tem can be considered as one of the most key problem of
developing EI technology and it is the main topic of this pa-
per. Huber et al. [26] investigate the benefits of a commu-
nity home microgrids and the coordination of smart homes.
Olivares et al. [27] propose an MPC based approach to
optimally dispatch the energy storage units, controllable
generators and smart loads in medium-voltage isolated mi-
crogrids. Zhou et al. [28] describe the operation of a central
controller for microgrids on neighboring islands to dynami-
cally dispatch the production of local distributed energy re-
sources. Ai and Xu [29] propose a centralized co-operation
model for a smart distribution system which includes multi-
microgrids. However, the above studies all are centralized
approaches, heavy communication and computation bur-
den will be yielded with the expanding of the system struc-
ture. In addition, these approaches cannot deal with the
case that the microgrids have competitive objectives, they
only aim to minimize the total operation cost of the whole
EI system, but do not consider the distinct objectives of
the individual microgrid.

Distributed control strategies could reduce the require-
ments to manipulate large quantities of information ex-
changes related to the complex network of microgrids.
Fathi and Bevrani [30] study the energy consumption
scheduling of connected microgrids with considering un-
certainties in a semi-distributed approach. Wang et al.
[31] present a stochastic bi-level based decentralized power
dispatch model for the coordinated operation of multiple
microgrids where uncertainties of RERs outputs are con-
sidered. Kamyab et al. [32] analyze the demand response
problem in a smart grid with multiple utility companies
and multiple customers. Two non-cooperative games: the
supplier and customer side games developed, the existence
and uniqueness of the Nash equilibrium in the mentioned
games are studied. Asimakopoulou et al. [33] present
a leader-follower strategy for analyzing competitive situ-
ations of hierarchical decision making between microgrids
and large central production unit. A stackel-berg game is
implemented to decide the real-time power exchange. Yang
et al. [34] study a parallel distributed framework for de-
mand response in smart grids which includes users with
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RERs. The goal is to optimize the load schedule of users
to minimize the utility company’s cost and user payments.

Several factors, such as the power production of the
RERs and load demand varying over the time, and the
different microgrids having distinct objectives, make the
traditional scheduling strategies unable to deal with the
scheduling problems of EI efficiently. MPC is an advanced
method for process control, which has been widely used in
a variety of complex dynamic systems [35]. In recent years,
MPC has drawn much attention of the energy management
community due to its ability to incorporate both forecasts
and newly updated information to decide the future behav-
iors of the system and handle constraints efficiently. As the
emerging of smart grid and EI technologies, the MPC-based
distributed algorithms are also considered as a promising
way to efficiently handle the cooperation problems of the
large power system which consisted with multiple subsys-
tems, due to it can not only keep the advantage of MPC
technology but also can decompose the complexity of the
optimization problem with a distributed way [36].

In this paper, we propose a MPC-based distributed op-
timal scheduling strategy for an EI which includes a utility
company, multiple microgrids and a few independent con-
sumers. This strategy is used for the coordinated operation
of entities such as microgrids, utility and consumers, which
have distinct objectives. All the microgrids and indepen-
dent consumers are autonomously scheduled by their own
EMSs. The EMSs send their total purchasing/selling plans
to the EI operator and receive the real-time retail electricity
price from the EI operator in each optimization iteration,
which can effectively reduce the computation burden com-
paring to the centralized optimization approaches, as well
as avoid infringing the privacies due to each EMS does not
need to disclose the operation plan of the dispatchable units
to other EMSs. In addition, this strategy can save much
communication costs and time comparing to the sequential
distributed approaches used in [37].

More specially, the contribution of the present paper is
summarized in the following:

1) A MIP-based optimization model of the microgrid
which considers many key features, such as minimum run-
ning/stopping time of the DDGs, charging/discharging
switch of the ESDs, and various kinds of smart loads is
proposed.

2) MPC-based distributed optimization strategy which
not only can coordinate the operation of entities in the EI
system with competitive objectives but also can effectively
handle the uncertainties introduced by loads and RERs.

3) The proposed method is verified by simulation-based
case studies.

The rest of this paper is organized as follows. Section
2 presents the model of the entities in the EI and the re-
tail electricity price mechanism. Section 3 introduces the
MPC based distributed control scheme for coordinating the
operation of the entities in the EI. Case studies and simu-
lations are implemented in Section 4. Finally, conclusions
are drawn in Section 5.

2 System Model and Problem Formu-
lation

Consider an EI consists of a set of microgrids, several
independent consumers and a utility company, intercon-
nected through a power transmission infrastructure and a
communication network, as shown in Fig. 1. For saving
space and better understanding, we also consider the inde-
pendent consumers as microgrids which have neither gen-

erators nor ESDs. The demand of each microgrid can be
supplied from the internal sources (such as its own RERs,
DDG, and ESD) or/and from the other sources (such as
other microgrids and the utility company) throughout the
EI system. The EI operator controls the generation output
of the utility company, decides the retail selling/purchasing
electricity price and sends this price information to all
the microgrids, and receives information from the micro-
grids. The microgrid EMS controls the load schedule of
the smart loads, the output of its own DDGs, the charg-
ing/discharging plan of its own ESDs, and the purchasing
or selling power plan of the microgrid. The determination
of the EI operator is influenced by the actions of the EMSs,
and vice versa. The objective of the EMS in each entity is
to optimize its individual objective and to increase its own
benefit, and the variables of each entity are distinct. There-
fore, the coordination of the EI system can be formulated
as competitive games model.

2.1 System Modeling

1) Loads Model
The loads in microgrid i consist of the critical loads,

schedulable loads, and flexible loads [34], as shown in (1).

li(t) = li,B(t) + li,F (t)(1− θi,F (t)) +

Ai,S∑
a=1

li,a(t). (1)

For the schedulable appliance α, there are start time and
deadline constraints for completing its task, and the lower
and upper power bounds should be satisfied during its op-
eration time, as shown in (2). In addition, a certain energy
must be consumed for this task, as shown in (3).

{
lmin
i,a ≤ li,a(t) ≤ lmax

i,a , if T start
i,a ≤ t ≤ T end

i,a

li,a(t) = 0, otherwise
(2)

T end
i,a∑

t=T start
i,a

li,a(t)∆t = Ei,a. (3)

For the flexible loads, the power adjustment ratio must
be bounded in a certain range to keep the user’s comfort,
as expressed in (4).

0 ≤ θi,F (t) ≤ θmax
i,F . (4)

As we all know, the critical loads cannot be adjusted or
scheduled, their power demand should be satisfied all the
time. However, their actual and forecasted power demand
both cannot excess the corresponding capacity limit, as de-
noted in (5).

0 ≤ li,B(t) ≤ lmax
i,B . (5)

2) Generators Model
In this EI, the microgrids may have DDGs and RERs.

The DDG model used in this paper is based on a micro-
turbine [17]. Its power output, minimum up time, mini-
mum down time, and ramp up/down power constraints are
illustrated in (6)−(9), respectively.

Pmin
i,DDGδi,DDG(t) ≤ Pi,DDG(t) ≤ δi,DDG(t)Pmax

i,DDG (6)

δi,DDG(t)− δi,DDG(t− 1) ≤ δi,DDG(τ1) (7)

δi,DDG(t− 1)− δi,DDG(t) ≤ δi,DDG(τ2) (8)

−Ri,DDG(t− 1) ≤ Pi,DDG(t)− Pi,DDG(t− 1) ≤ Ri,DDG(t)
(9)
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Fig. 1. Schematic of an EI.

where τ1, τ2 are introduced auxiliary parameters, and τ1 =
t + 1, . . . , min(t + T up

i,DDG − 1, T ), τ2 = t + 1, . . . , min(t +

T down
i,DDG − 1, T ), and they are used for expressing the mini-

mum up and down time constraints, respectively.
Though the output of the RERs is considered as non-

dispatchable, for preventing large errors introduced by fore-
cast models, the forecasted outputs of PV and wind gener-
ators must be in certain bounds in each period, as shown
in (10) and (11).

0 ≤ Pi,PV (t) ≤ Pmax
i,PV (10)

0 ≤ Pi,wind(t) ≤ Pmax
i,wind (11)

3) ESD Unit Model
ESD units play an important role in the power system

operation, control and management [38]. ESD unit model
in this paper is based on battery storage technology. It is
modeled by the maximum and minimum state of charge
(SOC) level, charging power limit, discharging power limit,
and operation status, as shown in (12)−(15), respectively.
In addition, the dynamic model of the ESD unit is very
important, the SOC level at the beginning of the next pe-
riod is determined by the current period SOC level and

the charging or discharging operation during this period,
as expressed in (16).

Emin
i,E ≤ Ei,E(t + 1) ≤ Emax

i,E (12)

δi,Ec(t)P
min
i,Ec ≤ Pi,Ec(t) ≤ δi,Ec(t)P

max
i,Ec (13)

δi,Ed(t)Pmin
i,Ed ≤ Pi,Ed(t) ≤ δi,Ed(t)Pmax

i,Ed (14)

δi,Ec(t) + δi,Ed(t) ≤ 1 (15)

Ei,E(t+1) = +Ei,E(t)+(ηi,EcPi,Ec(t)−1/ηi,Ed(t)−εi,E)∆t
(16)

where Ei,E(1) = Einit
i,E indicates the initial SOC level at the

beginning of the optimization process, t ∈ [1, T ]. For effec-
tively responding to the emergency conditions, the energy
level of the ESD at the beginning of each day must be kept
near its initial level.

4) Interaction With Other Microgrids
When a microgrid operates in grid-connected mode, it

can purchase/sell electricity from/to the utility company.
For encouraging the local use of RERs power output, guar-
anteeing the benefits of microgrid owners, and inciting the
utility company to buy electricity from the microgrid, we
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set the electricity purchasing price and selling price differ-
ent at the same time. The detailed price mechanism will be
introduced in the following. Therefore, for more effectively
operating the microgrids, we introduce auxiliary variables
δi,l(t) and δi,O(t) to model the possibility either to purchase
from or to sell energy to the utility grid. The constraints of
the purchasing power, selling power and operation status
at the point of common coupling (PCC) for microgrid i can
be illustrated as (17)−(19), respectively.

0 ≤ Pi,l(t) ≤ Pmax
i,l δi,l(t) (17)

0 ≤ Pi,O(t) ≤ Pmax
i,O δi,O(t) (18)

δi,l(t) + δi,O(t) ≤ 1. (19)

5) Power Balance Constraint
For each microgrid, power balance constraint must be

satisfied in every period, as shown in (20).

li(t) + Pi,Ec(t) + Pi,O(t)
= Pi,Ed(t) + Pi,l(t) + Pi,DDG(t) + Pi,PV (t) + Pi,wind(t).

(20)
Meanwhile, for the whole EI, the total generated power

of the utility company plus the buyback power from all the
microgrids must equal to the total power purchased by the
microgrids.

Pu(t) +

M∑
i=1

Pi,O(t) =

M∑
i=1

Pi,I(t). (21)

Besides, the generators of utility should be operated in
their power limit.

Pmin
u ≤ Pu(t) ≤ Pmax

u . (22)

For reducing the negative impacts introduced by ran-
domness of the RERs outputs and the loads demands, ex-
tra spinning reserve constraints must be considered for the
EI system.

(1 + D i)
M∑

i=1

li(t) ≤
M∑

i=1

δi,Ed(t)Pmax
i,Ed+

M∑
i=1

Pmax
i,I δi,I(t)

+
M∑

i=1

δi,DDG(t)Pmax
i,DDG+

M∑
i=1

Pi,PV (t)

+
M∑

i=1

Pi,wind(t)Pmax
u .

(23)
6) Retail Electricity Price Mechanism
The fuel cost of the utility generators and the DDGs are

all non-decreasing convex function of their own generation.
In most conditions, this convex function can be expressed
as a quadratic function in (24).

Cu(t) = a1 · (Pu(t))2 + a2 · Pu(t)
Ci,DDG(t) = c1

i,DDG · (Pi,DDG(t))2 + c2
i,DDG · Pi,DDG(t).

(24)
Therefore, the basic electricity price of the utility can be

denoted as follows:

pu(t) = a1 · Pu(t) + a2. (25)

Based on the overall consideration of increasing onsite
RERs use, inciting the utility to buy electricity from the
microgrids and the rate-of-return regulations [39], we set
the retail buying and selling electricity price for the micro-
grids as (26) and (27), respectively.

pi,b(t) = pi,b(t)pu(t) (26)

pi,s(t) = pi,s(t)pu(t) (27)

where pi,b(t) >1 to guarantee the rate-of-return of the util-
ity company, and ς < ρi,s(t) ≤1 to incite the EI operator
to buy the surplus energy of the microgrids and guarantee
the user’s benefits. ς is a preset coefficient.

2.2 Cost Modeling

For microgrid i, the objective is to minimize the total op-
eration cost in the future hours, which includes: the opera-
tion cost of the DDG units and ESD units, the purchasing
electricity cost by importing power from the utility com-
pany, the revenue from electricity sold back to the utility
company. Due to the capital costs of the power devices
are independent of the schedule, we do not consider them.
Therefore, the total operation cost of microgrid i in the
future hours based on the forecasts can be generated as
follows (denoted as Ψi).

Ψi =

T∑
t=1

{−Pi,O(t)pi,s(t)∆t + Pi,I(t)∆t

+ [Ci,DDG(t)

+Cup
i,DDG max(δi,DDG(t)− δi,DDG(t− 1), 0)

+Cdown
i,DDG max(δi,DDG(t− 1)− δi,DDG(t), 0)

]

+
[
cO&M

i,E (Pi,Ec(t) + Pi,Ed(t))∆t

+cswitch
i,E max(δi,I(t)− δi,I(t− 1), 0)

+cswitch
i,E max(δi,O(t)− δi,O(t− 1), 0)

]

+ccurt
i,F θi,F (t)li,F (t)∆t

}
s. t. (1)− (23). (28)

In (28), the first term is the revenue of selling power back
to the utility; the second term is the cost of purchasing
energy from the utility; the third term denotes the opera-
tion costs of the DDG units, which include fuel consuming
cost, startup cost, and shut down cost; the fourth term
is the operation cost of ESDs, which comprises operation
and maintenance cost, charge-to-discharge switch cost, and
discharge-to-charge switch cost; the last term is the flexible
power curtailment penalty cost.

The total cost of the utility includes fuel consuming cost
and purchasing cost from all microgrids (denoted as Ψu).

Ψu =

T∑
t=1

Cu(t) +

T∑
t=1

Pi,O(t)pi,s(t)∆t s. t. (1)− (23).

(29)
In (29), the first term is the fuel cost of the utility and

the second term is the purchasing electricity cost from all
microgrids.

The objective of the ith microgrid is to minimize its to-
tal operation cost Ψi in the future hours by optimizing the
dispatchable units in it. The goal of the utility would be
to minimize its total cost Ψu. In practice, the schedules
of each microgrid are calculated by trade-off between the
retail purchasing/selling electricity and its total cost, fur-
thermore, the decisions of each microgrid are affected by
the other microgrids. Therefore, it is intractable to mini-
mize the total cost of the whole EI system with respect to
the objective of each individual microgrid and the utility
company in a centralized way. The reasonable way is to al-
low each microgrid to optimize its own operation schedules
based on its EMS in a competitive way.
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3 MPC Based Distributed Optimiza-
tion

During the recent years, MPC framework has attracted
many considerations in power system energy management
due to the following reasons [25], [39], [40]: 1) the con-
trol action is based on the forecasts of the future time and
the newly updated information; 2) a feedback and rolling
horizon mechanism is implemented to make the system can
adjust the control actions according to the varying infor-
mation, this mechanism can handle stochastic factor ef-
fectively; and 3) it can efficiently handle different kinds
of constraints, linear or nonlinear. Since the scheduling
of the EI system is mainly completed by coordinating the
operation of microgrids which has competitive objectives,
a MPC-based distributed optimization strategy should be
proposed.

The coordination procedures for MPC-based distributed
optimization for an EI are as follows:

1) At the end of time step t − 1, the EMS of micro-
grid i obtains the updated system state of all the compo-
nents in this microgrid, including: SOC level of the ESD
unit Ei,E(t), power output Pi,DDG(t) and operation sta-
tus δi,DDG(t) of the DDG unit, the curtailed flexible load
li,F (t)θi,F (t), and the control action of the schedulable load
li,a(t). Then the EMS calculates the forecasted data of the
load demand, PV generation and wind production from t
to t + T .

2) The microgrids obtain their optimal control sequence
by solving (30) independently and parallel with Algorithm
2 shown in Table I in iteration k(k > 0) and receive the

newly updated retail electricity price pk+1
i,s (τ), pk+1

i,b (τ) in
iteration k + 1 until the equilibrium among the microgrids
have reached.

3) At time step t, only the first element of the optimal
control sequences of the dispatchable units in each micro-
grid obtained in step 2) can be implemented, the insuffi-
cient power due to the forecast errors will be compensated
by the fast responsive generators of the utility company,
in the opposite case, the surplus power will be abandoned,
and then the EI operator corrects and updates the param-
eters of the RERs output and load demand forecast model
with the new data.

4) Implement from step 1) again.
For ensuring the parallel distributed optimization algo-

rithm in Table I can achieve convergence, a penalty func-
tion (denoted as Φk

i ) in [41] is introduced to limit the power
changes of all the dispatchable units between two steps. It
aims to prevent the big changes of one dispatchable unit
in two successive iterations by penalizing the distance be-
tween two iteration steps, as shown in (30).

Φk
i =λk

i (||(P k
i,Ed(τ)−P k

i,Ec(τ)))−(P k−1
i,Ed(τ)−P k−1

i,Ec (τ))||22
+ ||lki (τ)− lk−1

i (τ)||22 + ||P k
i,DDG(τ)− P k−1

i,DDG(τ)||22
(30)

where λk
i is a coefficient to indicate the importance of

the ith microgrid in the EI system, which determines the
iteration steps needed to achieve convergence. P k

i,Ed(τ),

P k
i,Ec(τ), lki (τ), P k

i,DDG(τ) denote the determined ESD dis-
charging power, ESD charging power, total load demand
and DDG power output for the future hours, respectively in
the kth iteration. Since not all the microgrids have all kinds
of dispatchable units, thus the expression of (30) maybe
different, for example, the expression for the independent
users is Φk

i = λk
i ||λk

i (τ)− λk−1
i (τ)||22.

According to (30), large λk
i value can strictly restrict the

changes between two iteration steps, but the convergence
needs more number of iterations to achieve. Meanwhile,
too small λk

i value may cause violent fluctuations between
two iteration steps, and cannot guarantee the convergence.

min(Ψk
i + Φk

i ) s. t. (1)− (23). (31)

In (31), the only information that the ith microgrid needs
to determine is its optimal operation schedule is the retail
electricity prices. It can protect the user’s privacy due to
that the EMS does not need to report its detailed operation
scheme to other microgrids. Moreover, the distributed op-
timization algorithm in Table I will stop when the changes
of utility cost and power schedules of the microgrids are
within the preset thresholds in consecutive two iterations.

Due to the performance of the distributed algorithm pre-
sented in Table I is heavily dependent on the value of λk

i ,
thus the choice of λk

i should reflect the impacts of the ith
microgrid in the EI scheduling, and effectively prevent large
changes between two successive iteration steps. Based on
this consideration, an adaptive penalty coefficient λk

i is pro-
posed which is the trade-off between the step-size and the
iteration number.

TABLE I
Algorithm for Parallel Distributed Optimization

Method for EI System

Algorithm 1: for utility at time t

begin

k = 0; % iteration counter

Obtain the initial P k
i,I(τ), P k

i,O(τ) of each microgrid according
to the random generation technique; τ ∈ [t, t + 1, . . . , t + T − 1]

Calculate utility cost Ψk
u according to (29), the retail buying

electricity price pk
i,b(τ) and selling price pk

i,s(τ) according to

(26) and (27), respectively;

do

Broadcast updated retail prices to all microgrids;

Receive the newly updated P k+1
i,I (τ), P k+1

i,O (τ) simultaneously
from all the microgrids according to Algorithm 2 shown in the fol-
lowing; i ∈ [1, M ]

Calculate utility cost Ψk+1
u , retail electricity price pk+1

i,s (τ),

pk+1
i,b (τ)

k := k + 1;

until ||Ψk
u−Ψk−1

u || ≤ ξ1, ||lk(τ)−lk−1(τ)||≤ξ2,

|||P k
Ed(τ)−P k

Ec(τ)|| − ||P k−1
Ed (τ)− P k−1

Ec (τ)||| ≤ ξ3,

||P k
DDG(τ)− P k−1

DDG(τ)|| ≤ ξ4

end

Algorithm 2: for microgrid i at time t

begin

k = 0; % iteration counter

Initialize P k
i,I(τ), P k

i,O(τ) according to the random generation
technique;

Report P k
i,I(τ), P k

i,O(τ) to the EI operator; τ ∈ [t, t + 1, . . . , t +
T − 1]

While

Update the received retail electricity price pk
i,s(τ), pk

i,b(τ) from
the EI operator

Solve the optimization problem (31) and obtain the newly up-
dated P k+1

i,I (τ), P k+1
i,O (τ);

Report P k+1
i,I (τ), P k+1

i,O (τ) to the EI operator;

k := k + 1;

end

end

λk
i = max

{
γk

i ,
k

N
γk

i

}
. (32)

Equation (32) indicates that a relatively little coefficient
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γk
i can make the distributed optimization algorithm con-

verge to a certain range in a few iterations steps, and as the
iteration number becomes large enough (k ≥ N) a larger
and larger coefficient kγk

i /N is generated to constrict the
step-size of two iterations steps to ensure convergence of
the algorithm.

The coefficient γk
i is obtained as following:

γk
i = π ·




∥∥∥∥∥∥∥∥

T∑
t=1

P k
u (t)

T∑
t=1

(P k
i,I(t) + P k

i,O(t))

∥∥∥∥∥∥∥∥

2

2




α

(33)

where α > 0 is a preset constant, || · ||22 is used to prevent
emerging negative value because the microgrid may sell en-
ergy back to the utility company, and π is a step-size coef-
ficient which is used to adjust the operation impacts of the
microgrids in the EI system. As the amount of the penalty
coefficient γk

i reflects the importance of the ith microgrid
in the EI system, the exchanged power P k

i,I(t), P k
i,O(t) be-

tween the microgrid and the utility is chosen.
In (33), a small coefficient γk

i is selected for the micro-
grids whose total power interactions between the microgrid
and the utility are large (called large microgrids), other-
wise, a large coefficient γk

i is selected for the microgrids
whose total power interactions between the microgrid and
the utility are small (called small microgrids). The small
microgrids tend to schedule their dispatchable units with-
out considering the aggregate impacts on the retail price, a
large coefficient γk

i can effectively constrain the power vary
in consecutive iteration steps. However, the retail electric-
ity price has a more significant impact on the large micro-
grids.

4 Simulation and Results

4.1 General Setup

We consider an EI system with three microgrids, an in-
dependent consumer and a utility, as shown in Fig. 1. Each
microgrid includes a PV plant and kinds of smart loads,
meanwhile, microgrid 2 has a DDG unit instead of the wind
farm.

The rated power capacity of the PV plants and wind
farms, the rated power can be exchanged between the mi-
crogrids and the utility, and the rated power capacity of the
critical loads are all listed in Table II, as shown in Fig. 2.
The prediction error probabilistic distributions of the load,
wind and PV can be estimated with the method described
in [42]−[45]. However, as the focus of this paper is on
the scheduling and operation strategies, simplified normal
distribution models are used for representing the real-time
forecast errors of them. Flexible load demand of EI system
is assumed as 30 % of the critical load demand at the same
time, the maximum allowable curtailment ratio of it is 0.5,
and we assume 2.5 times of the base electricity price as
a penalty cost coefficient for penalizing the power curtail-
ment of the flexible loads. Since the schedulable loads are
consisted of a number of tasks, as shown in Table III, we do
not consider the penalty cost. Parameters of the ESD units
are denoted in Table IV, the depth of discharge (DoD) for
all the ESD units are assumed 80 %, and the initial SOC
of each ESD unit is 50 %. Parameters of the DDG unit in
microgrid 2 and the generator of the utility company are
shown in Table V.

Fig. 2. Data of the EI system needed in this paper.

TABLE II
Power Limits of Microgrids and Independent User

PV plant Wind farm PCC node Critical load

Microgrid 1 400 192 1200 672

Microgrid 2 400 0 800 496

Microgrid 3 0 240 800 560

Independent user 0 0 1500 800

TABLE III
Parameter of Schedulable Loads

Power demand

(kW)

Operation interval

(h)

Time window

(h)

Duration

(h)

Task 1 22 15−21 6 2

Task 2 28 14−23 9 4

Task 3 45 8−18 10 6

Task 4 37.5 6−24 18 8

Task 5 12 2−22 20 12

Task 6 60 8−22 14 7

Task 7 75 6−24 18 9

The duration of one period is set as an hour, the pre-
diction and control horizon equal to T time intervals, and
the total simulation horizon is 5 days. Due to the rate-of-
return regulations, we set the real-time retail purchasing
electricity price for the microgrid as 1.2 times of the base
price, and the real-time retail selling price for the microgrid
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TABLE IV
Parameter of ESDs

Max charge/

discharge power

Min charge/

discharge power
O&M cost Switch cost

Max energy

level

Charge /

discharge efficiency

Microgrid 1 160 5 0.05 0.06 320 0.95

Microgrid 2 140 8 0.05 0.05 300 0.95

Microgrid 3 120 6 0.05 0.07 260 0.95

TABLE V
Parameter of Controllable Generators

Max power
Min

power
Ramp rate Min up/down time Startup/shut down cost Cost coefficients

Microgrid 2 150 5 100 2/2 1.2/1.2 0.0042/0.32

Utility 4500 50 - - - 0.00048/0.28

is 0.8 times of the base price. Due to the cost of the respon-
sible generators which are operated in the real-time power
compensation stage to guarantee the power balance of the
EI system are higher than that of the common generators,
for saving space and better understanding, we assume that
cost coefficients of the responsible generators and the com-
mon generators are the same, but the electricity price for
the responsible generators is 3 times of the base price.

The parameters of the stopping criteria for the dis-
tributed optimization algorithm in Table I is set to be

ξ1 = 0.2, ξ2 = 0.1, ξ3 = 0.05, ξ4 = 0.05.

These above parameters are used for determining
whether the algorithm has reached its equilibrium. Other
parameters used in this paper are set to be

N = 16, ρ = 10, α = 1/2.

4.2 Simulation Results

In this section we will first verify the superiority of the
MPC-based distributed (DMPC) strategy proposed in this
paper by comparing its performance with the traditional
day-ahead-based distributed (DDA) strategy with consid-
ering forecast errors, then we will discuss the impacts of
the dispatchable elements such as the ESD units and DDG
units in the microgrids’ operation optimization, the impacts
of the step-size coefficient π will be discussed at last.

All simulations were run on a PC with Intel (R)
Core (TM) i5-3470 CPU @3.2 GHz and 8.00GB memory.
The ILOG’s CPLEX v.12 optimization solver is utilized for
solving the MIP models, MATLAB 2013a and YALMIP
toolbox [46] are used for linking the CPLEX solver and
computing the optimization model.

4.2.1 Results of the DMPC Strategy and DDA
Strategy

Firstly, we will introduce the DDA strategy briefly. It is
an open-loop based algorithm [17], whose detailed process
is shown as the follows.

1) In the scheduling stage, the EMSs implement the dis-
tributed optimization algorithm of Table I at the beginning
of the day with the forecasted RERs production and load
demand data and obtain the control sequence of the dis-
patchable units of all microgrids and the generation plan
of the utility within this day.

2) In the real-time power compensation stage, all the
microgrids will be operated as the control sequence de-
termined in the scheduling stage strictly. The insufficient

power will be compensated by the fast responsive gener-
ators of the utility, otherwise, the surplus power will be
abandoned.

Figs. 3 and 4 denote the operation schedules of the four
microgrids by implementing the DMPC strategy and the
DDA strategy, respectively without considering the real-
time power compensation stage operation.

Microgrid 1 purchases 4.1696×104 kWh electric power
from the utility company, sells 100.447 kWh electric power
back to the utility company, charges 1.3842×103 kWh elec-
tric power into the ESD unit, discharges 1.238×103 kWh
electric power from the ESD unit, and curtails
4.0911×103 kWh load power demand in the flexible loads
with the DMPC strategy. There is 4.2804×104 kWh
electric power is purchased from the utility company,
1.5318 kWh electric power is sold back to the utility com-
pany, 1.7663×103 kWh electric power is charged into the
ESD unit, 1.607×103 kWh electric power is discharged from
the ESD unit, and 104.0521 kWh load power demand is cur-
tailed in the flexible loads with the DDA strategy. The
final ESD energy level at the end of the simulation for
DMPC strategy and DDA strategy are 169.457 kWh and
144 kWh, respectively. Though less power is purchased
from the utility and more power is sold back to the utility
with the DMPC strategy than the DDA strategy, the ESD
unit plays a more important role with the DMPC strat-
egy than the DDA strategy, moreover, much more flexible
power is curtailed with the DMPC strategy than the DDA
strategy. Therefore, the operation cost of microgrid 1 with
the DMPC strategy is higher than the DDA strategy, as
shown in Table VI.

Microgrid 2 purchases 3.4277×104 kWh electric
power from the utility company, sells 11.18 kWh
electric power back to the utility company, charges
1.5522×103 kWh electric power into the ESD unit, dis-
charges 1.3915×103 kWh electric power from the ESD unit,
generates 1.0322×104 kWh electric power from the DDG
unit, and curtails 1.8871×103 kWh load power demand
in the flexible loads with the DMPC strategy. There is
3.6445×104 kWh electric power is purchased from the util-
ity company, no electric power is sold back to the utility
company, 1.6582×103 kWh electric power is charged into
the ESD unit, 1.5085×103 kWh electric power is discharged
from the ESD unit, 8.4204×103 kWh electric power is gen-
erated from the DDG unit, and no flexible load is curtailed
in the flexible loads with the DDA strategy. The final ESD
energy level at the end of the simulation for DMPC strat-
egy and DDA strategy are 157.4584 kWh and 135 kWh,
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Fig. 3. Operation schedules of the EI system for the DMPC approach.

respectively. The situation of microgrid 2 is similar to mi-
crogrid 1, though the DDG unit plays a more important
role with the DMPC strategy than the DDA strategy, much
more flexible load is curtailed with the DMPC strategy
than the DDA strategy, it leads the total operation cost
with the DMPC strategy is higher than the DDA strategy.

Microgrid 3 purchases 4.2527×104 kWh electric power
from the utility company, sells 136.05 kWh electric power
back to the utility company, charges 0.8931×103 kWh elec-
tric power into the ESD unit, discharges 0.8161×103 kWh
electric power from the ESD unit, and curtails
2.821×103 kWh load power demand in the flexible loads
with the DMPC strategy. There is 4.3178×104 kWh
electric power is purchased from the utility company,
98.3384 kWh electric power is sold back to the utility com-
pany, 1.3071×103 kWh electric power is charged into the
ESD unit, 1.4371×103 kWh electric power is discharged
from the ESD unit, and no flexible load is curtailed in the
flexible loads with the DDA strategy. The final ESD en-
ergy level at the end of the simulation for DMPC strategy
and DDA strategy both are 117 kWh. The situation of
micro-grid 3 is similar to microgrid 1, and thus the total
operation cost with the DMPC strategy is higher than the
DDA strategy.

Microgrid 4 purchases 7.5811×104 kWh and 7.5712 ×
104 kWh electric power from the utility company for the
DMPC strategy and DDA strategy, respectively. No flex-
ible load is curtailed in the flexible loads both with the
DMPC strategy and DDA strategy. Therefore, the total
operation costs of microgrid 4 with the DMPC strategy
and DDA strategy are nearly the same. The reason the
total operation costs with the DMPC strategy is a little

higher than the DDA strategy is that the forecasts used for
the DMPC strategy is updating as the time going, and is
more accurate than those used for the DDA strategy.

Meanwhile, we also can evaluate the performance of the
above operation strategies by analyzing the power out-
put of the utility company under these strategies. There
are 2.0627×105 kWh and 1.9431×105 kWh electric power
generated by the utility without and with considering the
DMPC optimization strategy, and 2.0636 ×105 kWh and
1.9814×105 kWh electric power generated by the utility
without and with considering the DDA optimization strat-
egy, respectively. The electric power generated by the util-
ity without considering optimization strategies are differ-
ent in two conditions just due to the forecast model in the
DMPC strategy is updated all the time whereas it is no
update in the DDA strategy.

As we all know, the forecasts of the RERs products and
load demand are imperfect, therefore, the conclusions ob-
tained from the above must be modified according to the
actual data. The utility generation in the scheduling stage
and the real-time stage with the DMPC strategy is nearly
the same, only 263.09 kWh electric power is generated by
the fast responsive generators. However, the utility genera-
tion in the scheduling stage and the real-time stage with the
DDA strategy has a little larger gap than that of the DMPC
strategy, there is 5.051×103 kWh electric power generated
by the fast responsive generators, as shown in Fig. 5. The
similar conclusions can also be deduced from Table VI.
Though the actual operation costs of the microgrids in
the EI system is lower than the costs of condition that
no optimization strategy is implemented, the cost incre-
ment of the DDA strategy from the scheduling stage to the
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Fig. 4. Operation schedules of the EI system for DDA approach.

Fig. 5. Actual generation of the utility company with DDA ap-
proach and DMPC approach.

real-time stage is higher than that of the DMPC strategy.

4.2.2 Discussions of Microgrid Elements

In this subsection we will discuss the impacts of the ESD
units and DDG units in the EI system.

Without the aid of the ESD units, the microgrids have
to sell the surplus power generated by the RERs back to
the utility when the electricity price is low, and purchase

TABLE VI
Scheduling Costs and the Total Costs for Both DMPC

Approach and DDA Approach

Cost (×105$)
Microgrid

1

Microgrid

2

Microgrid

3

Microgrid

4

Scheduling cost

with no optimization
0.6661 0.6721 0.6716 1.1479

Scheduling cost

with DDA
0.6316 0.5741 0.6376 1.0982

Scheduling cost

with DMPC
0.6484 0.5867 0.6537 1.0993

Total cost with

no optimization
0.6764 0.6831 0.6856 1.1619

Total cost

with DDA
0.6574 0.6016 0.6717 1.1338

Total cost

with DMPC
0.6502 0.5878 0.6555 1.1005

more power from the utility when the electricity price is
high. The operation schedules of the microgrids without
ESD units have large differences from those of the mi-
crogrid with ESD units. The four microgrids purchase
4.2677×104 kWh, 3.4412×104 kWh, 4.3333×104 kWh and
7.580×104 kWh electric power from the utility company,
respectively. Except microgrid 4 (it has no ESD unit
all the time), all the other microgrids increase the power
purchased from the utility. They sell −100.1259 kWh, 0,
−355.2156 kWh, 0 electric power back to the utility, re-
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spectively. The power sold from microgrid 3 increases a
lot. In addition, without the ESD unit, the curtailed flexi-
ble loads decrease a lot for all the microgrids. Meanwhile,
due to the ESD unit is very small, the cost increment for
all the microgrids is not very vast, as shown in Table VII.

TABLE VII
Scheduling Costs and Total Costs for DMPC Approach

Without Some Dispatchable Elements

Cost (×105$)
Microgrid Microgrid Microgrid Microgrid

1 2 3 4

Scheduling cost
without ESDs

0.6522 0.5920 0.6617 1.1186

Total cost
without ESDs

0.6536 0.5929 0.6631 1.1201

Scheduling cost without
ESDs and DDG

0.6800 0.6961 0.6846 1.1617

Total cost without
ESDs and DDG

0.6788 0.6951 0.6831 1.1605

Though only microgrid 2 has a DDG unit, it also
has significant impacts for the other microgrids’ opera-
tions. The four microgrids purchase 4.2692×104 kWh,
4.4706×104 kWh, 4.3341×104 kWh and 7.5806×104 kWh
electric power from the utility company, respectively. Only
microgrid 2 purchases a large power from the utility, the to-
tal purchased power for the other microgrids is nearly the
same as the conditions of only without ESD units. Mean-
while, the sold power for all the microgrids are all the same
as the conditions of only without ESD units. This simu-
lation case fully illustrates that the microgrids in the EI
system are coordinated with each other, though only the
DDG unit in microgrid 2 is lost, the operation costs of all
microgrids vary a lot.

4.2.3 Discussion of the Step-size Coefficient πππ

We have briefly discussed the importance of the step-
size parameter for the convergence of the parallel distri-
bution optimization algorithm in section III. In this sec-
tion we will show a series of numerical simulations with
different choice of this parameter, as shown in Fig. 6. We

Fig. 6. Convergence of the distributed optimization algorithm with different step-size coefficients.
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select the base π = 1 as used in (33) and then perform a
series of simulations with the parameter πsim selected as
1/32π, 1/16π, 1/8π, 1/4π, 1/2π, π, 2π, 4π, 8π, and 16π.
We observe that for this four microgrids EI system, the
convergence of the algorithm proposed in this paper can be
achieved in as few as 5 iterations for the base π=1, and the
number of iterations depends on the select value πsim. 6
iteration needed to achieve convergence when πsim = 1/4π.
However, if πsim becomes too small, the iteration numbers
will increase sharply, 22 iterations when πsim = 1/8π, and
more than 50 iterations are needed if πsim ≤1/16π.

5 Conclusion

In this paper, we introduce a MPC-based parallel dis-
tributed optimization method for optimal operation of an
EI which includes several microgrids, consumers, and a util-
ity company. These microgrids are equipped with critical
loads, flexible loads, schedulable loads, wind turbines, PV
panels, ESD units, and DDG units, and they are controlled
and optimized by their own EMSs. EMS of a microgrid can
determine the power purchasing and selling schedule be-
tween the microgrid and the utility, the operation plan of
the DDG units, ESD units, flexible loads and schedulable
loads based on the electricity price information from the
EI operator. In order to achieve the coordination of the
microgrids and protect the user’ privacies, a parallel dis-
tributed optimization is proposed, and a soft constraint on
the EMS schedule change between two consecutive itera-
tions is added. A traditional DDA strategy is implemented
to evaluate the performance of proposed DMPC strategy.
Numerical results showed that our proposed strategy is cost
saving and robust. The total electricity bill for the micro-
grids is 2.994 ×105 $ for the DMPC strategy which is less
than the 3.0645×105 $ for the DDA strategy and much less
than 3.207 ×105 $ for the normal operation without any
optimization. Moreover, the cost increments of the DMPC
strategy are the lowest in the three methods when we con-
sider forecast errors, as shown in Table I. The effects of
ESD units and DDG units on the DMPC strategy are in-
vestigated. Simulation results show that the dispatchable
units can reduce the users’ electricity bill effectively, and
the usage of these units in one microgrid can also affect
the operation schedule of other microgrids. The discussion
of the step-size coefficient π shows that the step-size coef-
ficient plays an important role for the convergence of the
distributed optimization operation method, we can use a
small coefficient at the beginning of iteration to acceler-
ate the convergence speed, and use a large coefficient to
guarantee the convergence of the distributed optimization
method.

In our future work, we will focus on analyzing the EI sys-
tem optimization operation method where the microgrids
can determine the selling and purchasing energy prices, and
theoretically analyze the convergence properties of the dis-
tributed optimization operation method.
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