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Distributed Model Predictive Control Based on

Multi-agent Model for Electric Multiple Units
LI Zhong-Qi1, 2, 3 YANG Hui1, 2, 3 ZHANG Kun-Peng2, 3 FU Ya-Ting2, 3

Abstract The distributed-power electric multiple units (EMUs) are widely used in high-speed railway. Due to the structural
characteristic of mutual-coupled power units in EMUs, each power unit is set as an agent. Combining with the traction/brake
characteristic curve and running data of EMUs, a subtractive clustering method and pattern classification algorithm are adopted to
set up a multi-model set for every agent. Then, the multi-agent model is established according to the multi-agent network topology
and mutual-coupled constraint relations. Finally, we adopt a smooth start switching control strategy and a multi-agent distributed
coordination control algorithm to ensure the synchronous speed tracking control of each agent. Simulation results on the actual
CRH380A running data show the effectiveness of the proposed approach.
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The electric multiple units (EMUs) consist of several cou-
pled power units. The running process of EMUs is a non-
linear system which could be influenced by the changing
complex environment, various working conditions and so
on. For the research of the dynamic modeling of the EMUs,
the primary state-of-the-art method regards it as a special
case of general high speed trains[1−2]. Yet, the nonlinear
time-varying air resistance is ignored. Therefore, the basic
resistance equation was used to describe the influence of the
nonlinear air resistance on the first vehicle in [3], where the
authors put forward an adaptive control method of EMUs
for speed and position. However, the traction/braking force
would change sharply when working condition alters. In
addition, to guarantee high-precision position and speed
tracking control of each vehicle, a robust adaptive control
method which can optimize the control force of each vehi-
cle was presented in [4−5]. Similarly, with the nonlinear

feature of EMUs, Yang et al.[6] focused on the multi-model
describing EMUs and proposed a multi-model predictive
control algorithm. However, a great tracking error exists
in the start-up stage of the EMUs.

As a matter of fact, the centralized control method is
generally adopted in the EMUs. Specifically, all of the
power units′ traction/braking forces are uniformed and
given by the central control unit of EMUs. Nevertheless,
they can not meet some practical requirements when the
train is running on the curvature change points, gradient
change points, etc. For example, the traction force of a
climbing power unit would be higher than that of a horizon-
tal power unit, and the velocity misalignment would appear
among vehicles, which could augment the pressure/tension
of the couplers that may threaten the safety of the EMUs.

A multi-input and multi-output complex system such as
EMU operation process can be decomposed into multiple
mutually coupled subsystems and each subsystem is treated
as an agent, which reduces the compliancy and scale of com-
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putational problem under distributed coordination control
strategy of each agent[7−9]. The coordination among multi-
agent controllers has attracted lots of research interests. Du
et al.[10] found out the optimal control of each agent based
on the idea of Nash optimality. Similarly, when optimizing
the local performance index, [11] only considered the influ-
ences from other subsystems while ignoring the optimized
process impact on others. In addition, Zheng et al.[12−13]

utilized the idea of network decentralized predictive control
proposed in [14] and adopted neighborhood optimization
method to solve the optimal solution for each subsystem.
Liu et al.[15] considered the correlation of the input and
output of all related subsystems when they established the
objective function of the subsystem.

Based on the analysis mentioned above, we regard each
power control unit as an agent in this paper. Taking ad-
vantage of the agent network topology and mutual cou-
pling constraint relations, we establish a new multi-agent
model of EMUs. Subtractive clustering and pattern clas-
sification algorithm are used to set up multi-model set ac-
cording to the traction/brake characteristic curve and the
operation process of each agent. For the sake of the syn-
chronous speed tracking control of each agent, a smooth
start switching control strategy composed of the propor-
tion integration differentiation (PID) and the generalized
predictive controller (GPC) methods and a multi-agent dis-
tributed coordination control algorithm are adopted, they
can meet actual operation requirements of EMUs.

1 Description of multi-agent model for
EMUs

Fig. 1 describes the EMUs composed of the n power
units. Each power unit is associated with an adjacent power
unit and couples each other. Its dynamic mechanism model
is shown as follows:

m1ya1 = u1 − k(s1 − s2)− b(y1 − y2)−(
c0 + cvy1 + cay2

1

)
m1

miyai = ui − k(si − si−1)− k(si − si+1)− b(yi − yi−1)−
b(yi − yi+1)−

(
c0 + cvyi + cay2

i

)
mi

mnyan = un − k(sn − sn−1)− b(yn − yn−1)−(
c0 + cvyn + cay2

n

)
mn (1)
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Fig. 1 Analysis of the high speed EMU longitudinal dynamics

where i = 2, · · · , n − 1, n is the number of power units,
cay2

i is the air resistance on the EMUs, c0 + cvyi is the
mechanical resistance, ui represents the traction/braking
force of each vehicle, si, yi and yai respectively represent
the displacement of each vehicle, running speed and oper-
ation acceleration, mi is the quality of each control unit,
k is the spring coefficient between adjacent control units,
b is the damping coefficient of adjacent vehicle. c0, cv, ca

are resistance coefficients. With the increase of the EMUs
speed, the value of cay2

i becomes larger, and consequently
the system tends to be more nonlinear.

Each power unit in Fig. 1 is viewed as an agent. The
coupling forces of each agent change essentially along with
the changing of traction/braking. So we adopt trac-
tion/braking force coupling relationship instead of coupler
force coupling relationship to describe the mathematical
model of EMU operation process. The discrete mathemat-
ical model can be expressed as

yi(k) = f{yi(k − 1), u1(k − 1), · · · ,

uj(k − 1), · · · , un(k − 1)} (2)

where i, j = 1, · · · , n, yi(k) is the speed of the ith agent,
uj(k) denotes the traction/braking force of the jth agent
and f is the nonlinear function.

Fig. 2 shows the description of EMUs distributed multi-
agent model based on graph theory, which reveals a serial
structure of the distributed multi-agent model. Vin and
Vout respectively represent the input and output adjacent
set of the agent[16], and can be expressed as





VVV +
G(agent1)={agent2} : input adjacent set

VVV −
G(agent1)={agent2} : output adjacent set

VVV +
G(agenti)=

{
agenti−1, agenti+1

}
: input adjacent set

VVV −
G(agenti)=

{
agenti−1, agenti+1

}
: output adjacent set

VVV +
G(agentn)=

{
agentn−1,

}
: input adjacent set

VVV −
G(agentn)=

{
agentn−1,

}
: output adjacent set

Fig. 2 The description of EMU distributed multi-agent model
based on graph theory

2 Multi-agent modeling

In order to describe the non-linear characteristics of each
agent effectively, a multi-modeling theory is adopted to
model each agent. The basic idea of multi-modeling theory
divides the entire work area into several subintervals ac-
cording to certain criteria. It establishes the corresponding

sub-model in each subinterval and then uses the optimal
sub-model to substitute the global model[17−19]. Spread-
ing each agent of the EMUs in multiple operating points
respectively, m models Ri1, Ri2, · · · , Rim of the ith agent
are as follows:

Ril : Ail(z
−1)yi(k) = Bijl(z

−1)uj(k − d) + ξil(k),

i, j = 1, 2, · · · , n; l = 1, 2, · · · , m (3)

Equation (3) could be expressed as least squares:

yil(k) = φφφT
ilθθθil + ξil(k) (4)

In order to obtain multi-model (4), the model structure
m and parameter θθθil need to be determined. This paper
uses the subtractive clustering algorithm to determine m
and uses least square method to estimate parameter θθθil.

2.1 Model structure identification

Subtractive clustering is a single fast algorithm used to
estimate the number of clusters and the cluster center posi-
tion of one set of data[20−21]. In the multi-model modeling,
as the number of models increases, the influence of nonlin-
ear characteristics becomes weaker, and the control preci-
sion gets higher. However, an excessive number of models
will lead to a big calculation. So determining the optimal
number of dynamic models is necessary. The merits of clus-
tering center′s number could be measured by the effective
index. The following index function is used in this paper:

Qm =

N∑
i=1

m∑
j=1

µ2
ij

∥∥XXXi −XXXc
j

∥∥2
(5)

where N is the number of sample data, m is the number
of clusters, namely number of models, XXXi denotes the ith
sample data, XXXc

j is the jth cluster center, µij is the mem-
bership of the ith sample data in the jth cluster.

2.2 Model parameter estimation

According to (2) we know that the operational process
of each agent is a multi-input single-output system. In this
paper, each agent can be described as multi-input single-
output auto-regressive and moving average (ARMA) mod-
els

Ail(z
−1)y(k) = B1jl(z

−1)u1(k − d) + · · ·+
Bijl(z

−1)uj(k − d) + · · ·+
Bnjl(z

−1)un(k − d) + ξil(k) (6)

where i, j = 1, · · · , n, l = 1, · · · , m. ξil(k) is white noise
sequence, Ail and Bijl are shown as follows:
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Ail(z
−1) = 1 + ail1z−1 + ail2z−2 + · · ·+ ailna

z−na

Bijl(z
−1) = bijl0 + bijl1z−1 + bijl2z−2 + · · ·+ bijlnb

z−nb

(7)

Equation (6) can be transferred into a least squares form:

yil(k) =− ail1yi(k − 1)− · · · − ailna
yi(k − na) +

bi1l0u1(k − d) + · · ·+ bi1lnb
u1(k − d− nb) +

bijl0uj(k − d) + · · ·+ bijlnb
un(k − d− nb) +

binl0un(k − d) + · · ·+ binlnb
un(k − d− nb) +

ξil(k) = φφφT
ilθθθil + ξil(k) (8)

where φφφT
il is the data vector, θθθil is the estimated parameter

vector, it is identified by the recursive least square method
(RLSM)[22] based on each agent′s input and output data in
the course of EMUs running. RLSM is shown as follows:

θ̂θθ(k + 1) = θ̂θθ(k) + KKK(k + 1)
[
y(k + 1)−φφφT(k + 1)θ̂θθ(k)

]

KKK(k + 1) =
PPP (k)φφφ(k + 1)

λ + φφφT(k + 1)PPP (k)φφφ(k + 1)

PPP (k + 1) =
1

λ

[
III −KKK(k + 1)φφφT(k + 1)

]
PPP (k) (9)

where the initial value θ̂θθ(0) is a zero vector or sufficient
small positive vector, PPP (0) = (104 ∼ 1010)III, the forgetting
factor λ is close to 1, generally no less than 0.9.

2.3 Model switching strategy

The multi-agent switching strategy is a method that de-
termines which model in the multi-model is most matched
with the system′s working condition at the present moment
by a kind of performance index online[20]. Based on the
principle of the minimum accumulated error in the model
at each sampling time, the system automatically chooses
the optimal sub-model which minimizes the performance
index. The objective function of global switching for multi-
agent system is shown as

δδδ(k) =

n∑
i=1

δδδi(k) =

n∑
i=1

k∑

t=k−h

‖eeeil(t)‖2
1 + φφφil(t)Tφφφil(t)

=

n∑
i=1

k∑

t=k−h

‖yyyil(t)− ŷyyil(t)‖2
1 + φφφil(t)Tφφφil(t)

(10)

where eeeil(t) = yyyil(t) − ŷyyil(t) = yyyil(t) − θ̂θθ
T

ilφφφ(t) is the devi-
ation between the actual output of agent i and the output
of the lth linear model in agent i, h > 1 denotes the limited
time length, φφφil(t) denotes data vector, yyyil(t) is the output
of the lth linear model in agent i, and n denotes the number
of agents.

3 Distributed model predictive control
(DMPC) algorithm based on multi-
agent model

3.1 The distributed predictive controller struc-
ture of EMUs

The agent model structure of EMUs is shown in (6). We
should build predictive models and objective function for
each agent. When the DMPC of local coordination and the
decentralized model predictive control based on network

establish the performance index, the influence on optimal
control action of this subsystem by the output of other re-
lated subsystems is neglected. The control method based
on global performance index can improve the whole perfor-
mance of the system. But with this approach, each local
controller should exchange information with all local con-
trollers when using the global performance index, leading
to a big load to the network. The complex controller al-
gorithm is not convenient for engineering application. To
take into account the structure of EMUs, the real-time of
control algorithms and requirements of control objectives,
this paper uses a DMPC system structure based on neigh-
borhood optimization, as shown in Fig. 3.

Fig. 3 DMPC structure of EMUs

3.2 DMPC algorithm

In the EMUs multi-agent model, while each agent does
its local performance optimization, it will inevitably lead
to the performance diversification of its adjacent agent con-
troller. And then it affects the overall performance. So,
while agent does local optimization in multi-agent systems,
it should take into account the impact of its adjtacent
agent. Based on the above analysis, each agent of the
EMUs solves the performance index in the case of neigh-
borhood optimization in this paper. According to (6), the
predicted output of the ith agent can be written as

ŷyyi (k + j|k) =

n∑
j=1

Wij(z
−1)∆uj(k + j − 1) +

n∑
j=1

Wpij(z
−1)∆uj(k − 1) + W0(z

−1)yi(k)

(11)

On the right of (11), the first is the output predictive
values impacted by the future control action, and the re-
maining two are the output predictive values impacted by
the past control action.

Performance index based on neighborhood optimization
can be described as

minJi(k) = min
Nash

Ji(k) + min
Vin(i)→i

Ji(k) + min
Vout(i)→i

Ji(k)

(12)

where minNash Ji(k) is local performance index of agent i
in view of the Nash optimal solution and can be written as

min
Nash

Ji(k) =

P∑
j=1

‖yi(k + j)− wi(k + j)‖2Qi
+

M∑
j=1

‖∆ui(k + j − 1)‖2Ri
(13)
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minVin(i)→i Ji(k) is the performance index influenced by the
adjacency input agent i and can be expressed as

min
Vin(i)→i

Ji(k) =

P∑

α∈Vin(i)

(
P∑

j=1

‖yα(k + j)− wα(k + j)‖2Qα
+

M∑
j=1

‖∆uα(k + j − 1)‖2Rα

)
(14)

minVout(i)→i Ji(k) is the performance index of agent i in-
fluenced by the adjacency output agent and can be written
as

min
Vout(i)→i

Ji(k) =
∑

α∈Vout(i)

P∑
j=1

‖yα(k + j)− wα(k + j)‖2Qα

(15)

According to (13)∼ (15), (12) can be expressed as

minJi(k) = min
∑

β

(
P∑

j=1

‖yβ(k + j)− wβ(k + j)‖2Qβ
+

M∑
j=1

‖∆uβ(k + j − 1)‖2Rβ

)

s.t. umin ≤ uβ ≤ umax

∆umin ≤ ∆uβ ≤ ∆umax

0 ≤ yβ ≤ ymax (16)

where





i = 1, β = 1, 2

1 < i < n, β = i− 1, i, i + 1

i = n, β = n− 1, n

, P is prediction

horizon, M refers to the control horizon.
Equation (18) is a constrained optimization problem,

and it should be solved by the interior point method, Lemke
method, ellipsoid algorithm and so on. But they are dif-
ficult to obtain the analytical solution. In this paper, the
engineering optimization method is used. In this way, the
unconstrained quadratic programming is solved primarily.
And then the solutions obtained are verified whether they
meet the requirements of the EMUs actual operations. Ac-
cording to ∂Ji

∂∆Ui
, we have the optimal control. The output

predictive value is described as

ŷ(k + j) = [ŷ1(k + j), · · · , ŷi(k + j), · · · , ŷn(k + j)]T (17)

yr(k + j) = [yr1(k + j), · · · , yri(k + j), · · · , yrn(k + j)] de-
note the future output reference vector.

Control increment of all agents is defined as

∆u(k + j − 1) = [∆u1(k + j − 1), · · · , ∆un(k + j − 1)]T

(18)

R and Q are weight matrixes. Using the forecast model
(11), we can obtain all control increments when the perfor-
mance is optimal:

∆uuui = D(yyyri − fff i) (19)

D = (WTRW + Q)−1WTR (20)

fff i(k) =

n∑
j=1

Wpij(z
−1)∆uj(k − 1) + W0(z

−1)yi(k) (21)

where W is an n × n order matrix, whose value is solved
by Diophantine equation recursion. Let dddT is the first line
of the matrix D.

ui(k) = ui(k − 1) + dddT(yyyri − fff i) (22)

The whole control process is repeatedly run online
through rolling optimization.

3.3 Smooth control strategies in start-up condi-
tion of EMUs

Because the start point of GPC is behind the maximum
prediction horizon, the actual output before simulation can-
not track the reference trajectory, which results in error
jumps existing in the initial period of force control and ac-
celeration curves. To address the problem, a compound
control of PID and GPC methods is proposed to control
each agent. By comparing the errors of PID and GPC
methods in a consecutive time, switching of the two meth-
ods is realized. When (25) is met and this trend lasts a
period of time τ , we choose GPC method to control the
EMUs. Conversely, the PID approach is adopted. The
switching law is

δGPC(k) < δPID(k)

δGPC(k − 1) < δPID(k − 1)

· · ·
δGPC(k − τ) < δPID(k − τ)

(23)

where

δGPC(k) =

n∑
i=1

(
h∑

j=1

‖yi(k − j)− wi(k − j)‖2
)

h

δPID(k) =

n∑
i=1

(
h∑

j=1

‖yPIDi(k − j)− wi(k − j)‖2
)

h

4 Simulation and analysis

In this paper, we illustrate our methods in CRH380A
EMUs which consist of two carriages (T1, T8) and six lo-
comotives. According to the structural characteristics of
the power unit, the CRH380A train can be described using
three agents. Agent 1 is composed of the first, second and
third vehicles, Agent 2 is composed of the fourth and fifth
vehicles, Agent 3 is composed of the sixth, seventh and
eighth vehicles. The network topology structure among
various agents of the CRH380A EMUs is shown in Fig. 4.
We adopt the distributed coordination control algorithm to
guarantee synchronous speed tracking of the agents.

Fig. 4 The network topology structure for the agents
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Simulation study is carried out according to the trac-
tion/brake characteristic curve[23] and 15 000 groups of
data during EMUs running. The control forces of all agents
as samples are analyzed with the subtractive clustering
method. Clustering centers of each agent are shown in Ta-
ble 1.

Table 1 Clustering center of each agent

Model u1 (kN) u2 (kN) u3 (kN)

1 53.1085 35.4608 53.2608

2 30.2013 20.1382 30.0856

3 18.6281 12.4216 18.0269

4 −21.3809 −14.0851 −21.2843

5 −51.0851 −34.0175 −51.2683

6 0.0783 0.0532 0.0809

For each clustering set, the corresponding linear model
is built with the recursive least squares method. Model
parameters of each agent are given from Table 2 to Table
4.

Table 2 Model parameters of Agent 1

Model a1l1 b11l1 b12l1 b13l1

1 −0.9976 0.0038 0.0145 0.0032

2 −0.9835 0.0092 0.0256 0.0089

3 −0.9896 0.0063 0.0216 0.0061

4 −0.9921 −0.0023 −0.0126 −0.0023

5 −0.9929 −0.0025 −0.0052 −0.0026

6 −0.9782 −0.0047 0.0315 −0.0056

Table 3 Model parameters of Agent 2

Model a2l1 b21l1 b22l1 b23l1

1 −0.9968 0.0039 0.0147 0.0032

2 −0.9841 0.0091 0.0252 0.0091

3 −0.9893 0.0062 0.0213 0.0062

4 −0.9921 −0.0023 −0.0126 −0.0023

5 −0.9931 −0.0025 −0.0051 −0.0025

6 −0.9785 −0.0045 0.0318 −0.0052

Table 4 Model parameters of Agent 3

Model a3l1 b31l1 b32l1 b33l1

1 −0.9972 0.0038 0.0151 0.0033

2 −0.9842 0.0091 0.0256 0.0093

3 −0.9891 0.0065 0.0221 0.0065

4 −0.9929 −0.0021 −0.0128 −0.0024

5 −0.9932 −0.0023 −0.0053 −0.0028

6 −0.9791 −0.0048 0.0315 −0.0051

In Fig. 5, yr describes the actual speed target of the
CRH380A running from Jinan to Xuzhou East on certain
day. The methods of this paper are employed to achieve
the tracking control. y1∼ y3 describe the tracking of the

given speed processes of the three agents. The ranges of
tracking error are given in Table 5.

Fig. 5 Speed tracking curves of the agents

Table 5 Speed tracking error range of each agent

Number of agent Error (km/h)

Agent 1 (−0.0763, 0.0759)

Agent 2 (−0.0861, 0.0748)

Agent 3 (−0.0713, 0.0506)

Each agent has satisfactory tracking ability, which meets
the operation requirements at a relatively high precision
and meets positioning speed measuring error requirements
of the CTCS-3[24].

The control force curves of the agents are shown in Fig. 6.
The accelerated speed curves of the agents are indicated in
Fig. 7. Control force and accelerated speed of each agent

Fig. 6 Control force curves of the agents

Fig. 7 Accelerated speed curves of the agents
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are smooth and mitigated in all working conditions of the
EMUs, which meets the requirements of the passenger com-
fort index.

We can observe that the EMUs track a given target dis-
placement curve with a high precision in Fig. 8. The dis-
placement deviations between each agent of the EMUs are
also no more than 5 cm in Fig. 9, which conforms the con-
trol requirement[25].

Fig. 8 Displacement of each agent

Fig. 9 Displacement deviation of each agent

5 Conclusion

A multi-agent model and distributed coordination pre-
dictive control method are proposed according to the struc-
ture and operation characteristics of the EMUs. We obtain
the multiple model sets of each agent and a multi-model
switching strategy based on the actual operation data of
the CRH380A EMUs. We adopt distributed predictive con-
trol method based on the engineering optimization to real-
ize the high-accuracy speed tracking control of each agent,
and meet the safety, comfort, high-speed and punctuality
of the EMUs.
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