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Residual Distributed Compressive Video Sensing

Based on Double Side Information
CHEN Jian1 SU Kai-Xiong1 WANG Wei-Xing1 LAN Cheng-Dong1

Abstract Compressed sensing (CS) is a novel technology to acquire and reconstruct sparse signals below the Nyquist rate. It
has great potential in image and video acquisition and processing. To effectively improve the sparsity of signal being measured and
reconstructing efficiency, an encoding and decoding model of residual distributed compressive video sensing based on double side
information (RDCVS-DSI) is proposed in this paper. Exploiting the characteristics of image itself in the frequency domain and the
correlation between successive frames, the model regards the video frame in low quality as the first side information in the process of
coding, and generates the second side information for the non-key frames using motion estimation and compensation technology at
its decoding end. Performance analysis and simulation experiments show that the RDCVS-DSI model can rebuild the video sequence
with high fidelity in the consumption of quite low complexity. About 1∼ 5 dB gain in the average peak signal-to-noise ratio of the
reconstructed frames is observed, and the speed is close to the least complex DCVS, when compared with prior works on compressive
video sensing.
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The compressed sensing (CS) theory[1−2] put forward by
Donoho and Baraniuk et al. during 2004∼ 2006 shows that
the high dimensional signal can be projected to a low di-
mensional space through an observation matrix incoherent
with the transform basis, as long as the signal is sparse in
a certain transform domain. Using a few observations, the
signal can be reconstructed precisely. Recent years, the
researches on reconstruction algorithm and measurement
scheme based on CS have made significant progress[3−10].
The application of CS theory about video coding is still in
an exploratory stage, but it has showed great development
prospects[11].

In 2006, Wakin et al. obtained sampling data through a
single pixel camera[12], and reconstructed the frames via the
sparsity in the 2-D wavelet domain (referred to as 2D-CS)
and a group of frames via the sparsity in the 3-D wavelet
domain (referred to as 3D-CS)[13]. In order to reduce the
computing burden of image or video compression, Lu put
forward block compressed sensing of natural image (Block-

CS) in 2007[14]. Then, some scholars applied the Block-

CS into video coding[15−16]. It reduced the computational
complexity significantly, however, its reconstructing per-
formance was not ideal. To make full use of inter-frame
correlation between moving pictures for further improving
coding efficiency, some scholars made a CS coding model
for the residual video (referred to as RVCS)[17−18]. During
2009, Do et al. proposed a kind of distributed compressed
video sensing DISCOS architecture[19], Prades-Nebot et al.
suggested the distributed video coding based on CS (DVC-

CS)[20], while Kang et al. studied another version of dis-

tributed compressive video sensing (DCVS)[21]. After 2010,
more and more scholars further researched on video CS
based on frame or block, inter-frame residuals, as well as
distributed video coding[22−26]. While those methods have
improved the quality of video reconstruction to some ex-
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tent, the complexity is also increasing.
To fully utilize the correlation of intra-frame and inter-

frame, a coding algorithm called residual distributed com-
pressive video sensing based on double side information
(RDCVS-DSI) is proposed in this paper to rebuild video
sequence in high fidelity under the conditions of lower com-
plexity.

1 Compressive video sensing

1.1 Compressed sensing

According to the CS theory[1−3], signal xxx can be sparsely
represented under some basis ψψψN×N

xxx = ψψψθθθ, xxx ∈ RN (1)

where θθθ is the transform coefficients of xxx in ψψψ domain.
When θθθ has only S (S ¿ N) nonzero elements, signal xxx
is S-sparse under the basis of ψψψ. Partial Fourier transform,
DCT and DWT are commonly used in sparse transform.
In compressed sampling, signal xxx is projected into a set of
measurement vectors of φφφ to give the measured value yyy, i.e.,

yyy = φφφxxx, yyy ∈ RM (2)

where yyy is an M × 1 measured values matrix, φφφ is an M ×
N measurement matrix (M ¿ N) incoherent with ψψψ[27].
Gaussian, Bernoulli, scramble Fourier and scramble block
Hadamard ensemble (SBHE) have been shown to be good
choices for the measurement matrix φφφ.

Compressed sampling is a dimension reduction process,
which helps reduce the number of collected data from N
to M . However, it also makes the recovery of signal xxx
from measurements yyy an ill-posed problem. The CS theory
states that the reconstruction can be formulated as an lp
minimization problem by solving:

min
θθθ
||θθθ||lp s. t. yyy = φφφψψψθθθ (3)

To solve the above optimization problem, many tech-
niques have been proposed in the literature, e.g., or-
thogonal matching pursuit (OMP)[28], two-step iterative

shrinkage/thresholding (TwIST)[29], gradient projection

for sparse reconstruction (GPSR)[30], and sparse reconstru-
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ction by separable approximation (SpaRSA)[31]. If signal
xxx is 2-D data, the above theory can be directly applied to
image compression combining with existing CS acquisition
device.

1.2 Compressive video sensing

Relative to the CS imaging, compressive video sensing
has more stringent requirements on storage resources and
real-time processing. Simultaneous temporal and spatial
measurement by the 3D-CS is impractical, and thus one
opts for frame-by-frame measurement. The most straight
compressive video sensing scheme 2D-CS, adopting frame-
by-frame CS for image, takes measurement and solution
according to formulas (2) and (3).

For alleviating the huge computation and memory bur-
dens, the Block-CS has been introduced into video cod-
ing. In the Block-CS, each frame is divided into NB non-
overlapping blocks xxxj (sized B × B, subscript j denotes
block indicator), and acquired using a suitable MB × B2

measurement matrix φφφB , then the corresponding yyyj is

yyyj = φφφBxxxj , xxxj ∈ RB×B , yyyj ∈ RMB (4)

It is straightforward to see that (4) applying block-by-
block to an image is equivalent to a whole-image measure-
ment matrix φφφ in (2) with a constrained structure that φφφ

is block diagonal[14, 22],

φφφ =




φφφB 000 · · · 000
000 φφφB · · · 000
...

...
. . .

...
000 · · · 000 φφφB


 (5)

When sparsity transform ψψψ is also a block-based opera-
tor, the frame can be reconstructed by block at the decod-
ing end. In general, block-independent reconstruction will
produce severe blocking artifacts, thus rebuilding by frame
is prior to block. In convenience, we focus on the CS for
video by frame. Since a structural measurement matrix[32]

in the form of (5) is used in this paper, the following scheme
is equally applicable to the compressive video sensing by
block.

According to the temporal redundancy of video, the cor-
relation model between successive video frames xxxt and xxxt+1

can be expressed as:

{
xxxt = xxxc + xxxt u

xxxt+1 = xxxc + xxxt+1 u
(6)

where xxxc is the common portion between xxxt and xxxt+1, while
xxxt u and xxxt+1 u are the specific portions. The RVCS and
DCVS are the two typical schemes for compressive video
sensing based on the above correlation model.

The basic idea of RVCS[17] comes from the traditional
inter-frame coding. By using the same measurement ma-
trix in a group of pictures (GOP), the difference of mea-
surements between adjacent frames is equivalent to the pro-
jection of inter-frame residuals, i.e.,

yyyt+1 − yyyt = φφφxxxt+1 −φφφxxxt = φφφ(xxxt+1 − xxxt) (7)

Therefore, video residuals can be acquired by the single-
pixel camera and a subtraction operation. For the scene of
slow motion or video surveillance, the neighboring frames
are much similar and inter-frame residuals have an inten-
sive sparsity, so it is more conducive to be measured and

rebuilt via CS. But for a general video sequence, the recon-
structing performance changes with inter-frame residuals.

The DISCOS[19] and DVC-CS[20] introducing the tra-
ditional video coding method to key-frame coding demand
the traditional camera to sample those data. In view of low
cost, we only discuss the DCVS[21] in which all frames can
be acquired by CS camera. The DCVS combines the idea
of distributed compressed sensing (DCS) and distributed
video coding (DVC), and it regards video sequences as
the relative sources in the joint sparse model (JSM). Each
frame is taken CS measurement individually at the encod-
ing end, and the non-key frames are jointly reconstructed
based on the side information at the decoding end. As the
coding scheme of DCVS is concise and the decoding algo-
rithm is very flexible, it is especially suitable for many fields
such as low-cost digital camera, power-saving and mobile
video collecting equipment, distributed sensor network, and
so on. However, its reconstruction performance still needs
further improving.

2 RDCVS-DSI

2.1 The basic idea and framework for RDCVS-
DSI

In general, the coding algorithms of RVCS and DCVS
improve the 2D-CS algorithm only in view of inter-frame
correlation between video frames, but not increase the cod-
ing efficiency through their own characteristics. According
to the correlation between successive frames described in
(6), finding an appropriate side information (xxxc), the xxxt

and xxxt+1 can be encoded through compressing the xxxt u and
xxxt+1 u. As the residual sparsity is very strong, it is more
advantageous to carry on CS coding.

This study intends to regard the low quality image of the
original frame xxxl (similar to xxxc) as the side information of
the xxxt and xxxt+1 for reference. The successive inter-frame
model in (6) can be expanded to a related model between
the key frame xxxk and the multiple non-key frames xxxnk in a
GOP, then





xxxk = xxxk l + ∆xxxk

xxxnk = xxxnk l + ∆xxxnk

xxxnk l = f(xxxk l)

(8)

where xxxk l represents the low quality version of the key
frame, xxxnk l represents the low quality version of the non-
key frame, 4xxxk and 4xxxnk represent the residuals between
the key/non-key and its low quality version, and f(·) indi-
cates the relationship between the key and non-key frames
in low quality version.

In order to guarantee quickly obtaining the reference
frame in low quality version both in the encoding and de-
coding ends, the first side information (SI1) is considered
to be generated with a large amount of information and a
few data at the encoding end, and it is sent to the decod-
ing end together with the measurement value, so as to be
quickly converted to the reference information for decoding.
As wavelet transform has a characteristic of time-frequency
scalability, and its main energy concentrates in the low fre-
quency, the wavelet coefficients are taken in the lowest layer
as SI1.

Because there is a strong sparsity in detailed informa-
tion of the difference between the key/non-key frame and
its low quality version in the same GOP, the residuals for a
key or non-key frame can be measured respectively. As the
SBHE has the advantages of good performance, simple op-
eration, less memory, etc., it is suitable for video measuring
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and coding. Thus, the SBHE is taken as the measurement
matrix φφφ in this paper. The following formulas give two
groups of information sources that the coding end needs to
sample:





θθθL k = LPDWT(xxxk)

∆yyyk = φφφ∆xxxk

φφφ = qwpqwpqwp

or





θθθL nk = LPDWT(xxxnk)

∆yyynk = φφφ∆xxxnk

φφφ = qwpqwpqwp

(9)

where LPDWT(·) denotes the operation of taking low fre-
quency components of discrete wavelet transform (DWT),
while θθθL k and θθθL nk denote the low frequency coefficients
of xxxk and xxxnk. The measurement matrix φφφ for a residual
frame can be decomposed into the product of random se-
lected matrix qqq, the block diagonal Hadamard matrix www,
and the random permutation matrix ppp. 4yyyk and 4yyynk

denote the residual measurement values for the key and
non-key frames, respectively.

Due to the strong sparsity of 4xxxk on behalf of the high
frequency information of a key frame, it can be directly
solved via convex optimization, adding to SI1 and perform-
ing inverse discrete wavelet transform (IDWT), and finally
the key frame will be reconstructed in high quality. In or-
der to compare with the existing CS video coding schemes,
the GPSR has been selected as the basic reconstruction al-
gorithm due to its high efficiency. The decoding for the
non-key frame needs to reconstruct 4xxxnk via convex opti-
mization and to combine the second side information (SI2).
SI2 is generated completely on the decoding side, relying
on motion estimation and compensation (MEMC) by the
reconstructed key frames. The initial condition, main it-
erative formula and auxiliary iterative condition for recon-
structing 4xxxnk are shown as follows




∆xxxs2 = MEMC(xxxk), ∆θθθs2 = DWT(∆xxxs2)

min
∆θθθnk

‖∆yyynk −φφφ∆xxxnk‖l2 + ‖∆θθθnk‖l1 s. t. ∆θθθ0 = ∆θθθs2

max
τ

τ(∆xxx
(i−1)
nk , ∆xxx

(i)
nk) s. t. ∆xxxnk = IDWT(∆θθθnk)

(10)

where MEMC(·) denotes the operation of motion estima-
tion (ME) and motion compensation (MC) using the recon-
structed key frames. In the actual decoding structure, to
reduce reconstructing complexity of the non-key frame, the

two operations are completed respectively by processing the
key and non-key frame decoding. 4xxxs2 and 4θθθs2 represent
SI2 in a pixel domain and a wavelet domain individually,
while 4xxxnk and 4θθθnk represent the non-key frame residu-
als and its coefficients in the wavelet domain. In processing
of the convex optimization reconstruction, its initial value is
4θθθs2, while the main iterative target is minimizing uncon-

strained function based on l1-l2 norm. 4xxx
(i−1)
nk and 4xxx

(i)
nk

respectively represent the (i−1)th and ith iterations of the
non-key frame residuals, their correlation can be modeled
as a Laplace distribution τ(·), and the auxiliary iterative
target is to maximize τ value.

Based on the above analysis, the basic coding structure
for RDCVS-DSI is summarized in Fig. 1, in which the thick
line denotes the residual measurement value and SI1 in the
frequency domain to be transmitted from the encoding end
to the decoding one.

Based on the compressed sensing theory, the sparser is
the signal, the lower measurement rate is needed to ex-
actly recover the original signal. In order to protect the
reconstruction performance, the key frame, as the refer-
ence frame, is usually acquired at a higher sampling rate.
Then after deducting the first side information, the residual
measured value is sufficient to precisely recover the residual
frame. While the reconstructed key frames are more accu-
rate, and the video section is closer to uniform translation,
the second side information obtained from motion estima-
tion and motion compensation is more accurate. Surely
the reconstruction performance of non-key frames will be
improved, and the convergence speed of the convex opti-
mization algorithm be shortened. On the other hand, in
order to improve the compression rate, the sampling rate
of non-key frame is generally made low, and we must ratio-
nally allocate the first side and the residual measurement
rates according to the sparsity of residual frame. When the
second side of information is more precise, a higher sam-
pling rate can be allocated to residual measurement, which
results in fast and efficient reconstruction of the non-key
frame; when the second side information is not nice enough,
we should increase the sampling rate of the first side infor-
mation to get a more sparse residual frame, so as to ensure
the reconstructing accuracy of non-key frames.

2.2 Performance analysis for RDCVS-DSI

As the RDCVS-DSI measures the residual signal, under

Fig. 1 Basic coding structure for RDCVS-DSI
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the precondition of using the same measure number and the
reconstructing algorithm, its reconstruction quality mainly
depends on the residual sparsity (rs), the accuracy of initial
iterative value (iv) in reconstructing and the suitability of
stopping rule (sr). Then the reconstruction quality for the
key and non-key frames (Q-k and Q-nk) in a GOP can be
expressed as

Q-k = α× rs ifk + β × ivk + γ × srk (11)

Q-nk = α× rs ifnk + β × ivnk + γ × sr rdcvsnk (12)

where rs if k, rs if nk and α respectively denote the average
residual sparsity for the key and non-key frames, as well
as their weight factors in reconstruction quality. ivk, ivnk

and β respectively denote the accuracy of initial value for
the key and non-key frames, and their weight factors in the
residual reconstructing. srk, sr rdcvsnk and γ respectively
denote the suitability of stop criterion for the key and non-
key frames, and their weight factors.

The encoding for the key frame mainly includes low-pass
filtering (lp), subtraction (sub) and residual measurement
(mea), while the decoding for the key frame mainly in-
cludes convex optimization solving (sol), inverse discrete
wavelet transform (idwt), motion estimation (me) and ad-
dition (add) operations. The encoding steps for the non-
key frames are similar to the key ones, while its decoding
includes convex optimization solving with initial value and
multiple stopping criterions (sol rdcvs), motion compensa-
tion (mc), high-pass filtering (hp), inverse discrete wavelet
transform (idwt), and addition (add) operations. The com-
putational complexity of idwt is equal to dwt, while lp and
hp have the similar computational complexity, and their
multiplications are not more than a half of dwt. Compared
to dwt, the computational complexity for add and sub op-
erations should be negligible. Therefore, the coding com-
plexity for the key and non-key frames (C-k and C-nk) can
be approximately expressed as

C-k = lp + mea + sol + idwt + me ≈
mea + 1.5dwt + sol + me (13)

C-nk = lp + mea + sol rdcvs + mc + hp + idwt ≈
mea + 2dwt + sol rdcvs + mc (14)

For checking the coding performance of RDCVS-DSI
algorithm, the reconstruction quality and computational
complexity are illustrated in Tables 1 and 2, together with
2D-CS, RVCS and DCVS algorithms.

Regardless of the key or non-key frame, the sparsity of a
frame (fsk or fsnk) is less than that of the residual frame,
and the sparsity of intra-frame residuals (rs if k or rs if nk)
reflecting the high frequency components of a frame is usu-
ally stronger than that of inter-frame residuals (rs df nk)
reflecting the inter-frame motion. That is,

rs ifk > fsk, rs ifnk > rs dfnk > fsnk (15)

The convex optimization solving for a key frame via four
algorithms named 2D-CS, RVCS, DCVS and RDCVS-DSI,
as well as for a non-key frame via the first two algorithms,
only has main iterative target, so srk and srnk can be con-
sidered the same. As the convex optimization solving for
a non-key frame by the last two algorithms has introduced
iterative initial value and auxiliary iterative target, the rel-
evant experiment[21] has showed that the joint effect of ivnk

and sr dcvsnk is better than srnk. In addition, sr rdcvsnk

for a residual frame is much finer than sr dcvsnk for a frame,
thus three algorithms are the same, and DCVS are inter-
mediate.

In the computational complexity problem, the multipli-
cation computation by fast wavelet transform and weighted
motion compensation for an image containing N pixels are
both O(4N), and the measurement computation on it us-
ing block Hadamard matrix sized M is about O(MN). It
is difficult to precisely calculate the computational cost of
the convex optimization solving via GPSR, however it con-
tains a moderate amount of inner product, measurement,
vector-scalar multiplication and vector addition in each it-
eration step. As the complexity of each iteration exceeds
the total complexity of lp, dwt, mea, add and sub, sol with-
out initial condition is the most complicated step in decod-
ing. Due to the introduction of reference side information
and auxiliary iterative condition, the iterative number for
sol dcvs (or sol rdcvs) decreases, meanwhile, the operation
for generating side information (me + mc) adds. The rele-

vant experiment[21] has showed the joint complexity of the
later two is below sol. Therefore, the coding complexity
via DCVS is the lowest, RDCVS-DSI takes second place.
As the key frame coding by RVCS needs sol twice, its com-
plexity is supreme.

3 Simulation

In order to validate the performance of RDCVS-DSI, we
have taken simulations by Matlab tool, using peak signal-
to-noise ratio (PSNR) to reflect the reconstruction quality,

Table 1 Performance comparison for the key frame among 4 algorithms

Q-k C-k

2D-CS mea + dwt + sol

RVCS α× fsk + γ × srk mea + 2dwt + 2sol

DCVS mea + dwt + sol

RDCVS-DSI α× rs ifk + β × ivk + γ × srk mea + 1.5dwt + sol + me

Table 2 Performance comparison for the non-key frame among 4 algorithms

Q-nk C-nk

2D-CS α× fsnk + γ × srnk mea + dwt + sol

RVCS α× rsnk + γ × srnk mea + dwt + sol

DCVS α× fsnk + β × ivnk + γ × dcvsnk mea + dwt + sol dvcs + me + mc

RDCVS-DSI α× rs ifk + β × ivnk + γ × srnk mea + 2dwt + sol rdcvs + mc
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encoding and decoding time (enc-dec-time) to reflect the
computational complexity. We employ 9/7 wavelet as the
sparse operator, SBHE as measurement matrix, and adopt
GPSR as reconstructing algorithm. The initial material
is taken from the first 100 frames in two groups of stan-
dard QCIF sequences with different video features — fore-
man (smoothing image and medium-speed moving scenes)
and coastguard (various texture and slowly moving scenes).
The experimental platform is a desktop computer, config-
ured as AMD Athlon (tm) 64 × 2 Dual Core Processor
4800+, dominant frequency 2.53GHz and memory 2 G.

For convenient comparison, we also have taken the re-
lated modules of three algorithms — 2D-CS[13], RVCS[17]

and DCVS[21] as references. To be fair, the amount of SI1
requiring transferring to the decoder via RDCVS-DSI algo-
rithm should be converted into the measurement number
and recorded in the sampling rate together with the resid-
ual measurement number. That is, for three reference algo-
rithms, the average sampling rate = the measurement data
quantity/the original data quantity, while for RDCVS-DSI,
the average sampling rate = (the measurement data quan-
tity + the side information data quantity)/the original data
quantity.

Figs. 2 and 3 show the graphical charts about the av-
erage PSNR (Ave-PSNR) and average enc-dec-time (Ave-
enc-dec-time) for recovering video sequence by the four al-
gorithms as the sampling rate slopes up, when the size of
GOP (GOPSize) is 5. Figs. 4 and 5 show these two graphi-
cal charts as the GOPSize grows, when fixing the sampling
rate of the key frame to be 70%, and the non-key frame
30%. The subgraphs (a) and (b) in Figs. 2∼ 5 show the
simulation results for the two groups of the given test se-
quences separately.

Being seen from Fig. 2, in the process of the sampling
rate changing, the RDCVS-DSI considering the correla-
tions both inside frame and between frames has achieved
better PSNR than the other three algorithms; the RVCS
and DCVS merely considering the inter-frame correlation
take the second place, while 2D-CS considering neither
the intra-frame nor inter-frame correlation gets the worst
PSNR.

Fig. 3 shows the computational complexity in view of the
average encoding and decoding time. Although the cod-
ing complexity of RDCVS-DSI increases slightly compared
with DCVS at low sampling rate, its reconstruction quality
ascends. With the growth of the sampling rate, the total
coding time of RDCVS-DSI is close to, even less than that
of DCVS, and the 2D-CS is longer, RVCS the longest.

(a) Foreman

(b) Coastguard

Fig. 2 Ave-PSNR and sampling rate relationship in
QCIF format

(a) Foreman

(b) Coastguard

Fig. 3 Ave-enc-dec-time and sampling rate relationship in
QCIF format

From Figs. 4 and 5, as the GOPSize increases the corre-
lation between frames abates, the PSNR for RDCVS-DSI
algorithm is always above other algorithms, and its coding
time gets close to DCVS with the lowest cost.

Further, we get the second material from the first 50
frames in the two groups of standard CIF sequences with
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different video features — mobile (intermediate-speed mov-
ing) and bus (fast moving). The relationship of ave-enc-
dec-time is similar to the result in QCIF. So we only show
the PSNR as the sampling rate grows, as that in Fig. 6. For
saving space, we ignore the PSNR with GOPSize, since the
tendency is easy to estimate from Figs. 4 and 6.

(a) Foreman

(b) Coastguard

Fig. 4 Ave-PSNR and GOPSize relationship in QCIF format

(a) Foreman

(b) Coastguard

Fig. 5 Ave-enc-dec-time and GOPSize relationship in
QCIF format

(a) Mobile

(b) Bus

Fig. 6 Ave-PSNR and sampling rate relationship in
CIF format

We can see that when the object is making translation
as in mobile sequence, the DCVS obtains a higher PSNR
than the 2D-CS and RVCS, because the relevant model co-
incides with its moving track. When the target motion is
too intense as in bus sequence, the inter-frame advantage of



2322 CHEN Jian et al.: Residual Distributed Compressive Video Sensing Based on · · · Vol. 40

the RVCS and DCVS might become invalid. Fortunately,
our RDCVS-DSI is optimal in both situations.

Finally, we test the four algorithms with a real AVI
stream — racing car (512 × 384, varied movement). We
can see from Fig. 7 that the performances of the former
three algorithms vary in the real situation, as compared
with the simulation sequence. In any case, the RDCVS-
DSI still keeps ahead by reasonably adjusting the sampling
rate between the first side information and residual mea-
surement.

Fig. 7 Ave-PSNR and sampling rate relationship in
AVI format

4 Conclusion

For taking full advantage of the video spatial and tempo-
ral redundancy so as to improve the existing performance
of compressive video sensing, a structure of residual dis-
tributed compressive video sensing based on double side
information (RDCVS-DSI) is proposed in this paper. In
the RDCVS-DSI, in the pre-filtering process is carried on
before measuring, and the transform coefficients through
the low-pass filtering are regarded as SI1. Then the high-
frequency components are measured after filtering, and the
residual measured values together with SI1 are acquired
and transmitted to the decoding end. In the correspond-
ing decoding side, the residuals in sparse domain are re-
built via convex optimization, and then the key frame is
reconstructed by adding SI1 and performing inverse trans-
form from the sparse domain. The residuals of the non-key
frames are jointly reconstructed by SI2, which is obtained
by motion estimation, motion compensation and the high-
pass filtering.

The innovations lie in: 1) enhance the information con-
tent of side information only for the decoding of the non-
key frame in DCVS, and decompose it into SI1 (the low-
frequency components for both video frames) in both en-
coding and decoding sides and SI2 (the high-frequency
components for the non-key frame) in the decoding side,
so as to improve compression efficiency and reconstruction
performance; 2) introduce the joint reconstruction method
to residual rebuilding of the non-key frame, and generate
the side information through motion estimation by the key
frame, motion compensation and high-pass filtering by the
non-key frame individually, so as to improve the reconstruc-
tion speed to some extent. Performance analysis and simu-
lation are conducted compared with the existing video CS
algorithms. Test results show that the coding algorithm
of the RDCVS-DSI, according to the changing conditions

of video sequences with different characteristics, sampling
rate and image group size, can obtain good reconstruction
quality with quite low complexity. About 1∼ 5 dB gain
in PSNR of the reconstructed frames is observed, and the
speed is close to the least complex DCVS, when compared
with prior works on compressive video sensing. The next
step will be focused on intra-frame and inter-frame char-
acteristics of video, level selection of side information and
sampling rate allocation to further improve the overall per-
formance of the RDCVS-DSI.
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