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A Framework of Finite-model Kalman Filter with Case
Study: MVDP-FMKF Algorithm

FENG Bo1 MA Hong-Bin1, 2 FU Meng-Yin1, 2 WANG Shun-Ting1, 2

Abstract Kalman filtering techniques have been widely used in many applications, however, standard Kalman filters for linear
Gaussian systems usually cannot work well or even diverge in the presence of large model uncertainty. In practical applications, it
is expensive to have large number of high-cost experiments or even impossible to obtain an exact system model. Motivated by our
previous pioneering work on finite-model adaptive control, a framework of finite-model Kalman filtering is introduced in this paper.
This framework presumes that large model uncertainty may be restricted by a finite set of known models which can be very different
from each other. Moreover, the number of known models in the set can be flexibly chosen so that the uncertain model may always
be approximated by one of the known models, in other words, the large model uncertainty is “covered” by the “convex hull” of
the known models. Within the presented framework according to the idea of adaptive switching via the minimizing vector distance
principle, a simple finite-model Kalman filter, MVDP-FMKF, is mathematically formulated and illustrated by extensive simulations.
An experiment of MEMS gyroscope drift has verified the effectiveness of the proposed algorithm, indicating that the mechanism of
finite-model Kalman filter is useful and efficient in practical applications of Kalman filters, especially in inertial navigation systems.
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Inertial navigation systems (INS)[1] are widely used in
many applications, and a good inertial navigation system is
usually expected to be absolutely independent, all-weather
and anti-interference. The gyroscope is a kernel device in
the inertial navigation systems. The precision of the INS
mainly depends on the precision of inertial devices, such as
gyroscopes and accelerometers.

In order to improve the precision of inertial navigation
systems, it is important to estimate the errors of the kernel
devices and make a compensation for the inertial naviga-
tion systems[2]. In practice, one main approach is the so-
called Kalman filtering, which was proposed in Kalman′s
pioneering work[3], where he formulated one general state
estimating problem and investigated the linear filtering and
prediction problem.

The standard Kalman filter applies to linear systems
with precisely known model and a priori knowledge of sta-
tistical nature on process noise and measurement noise.
Following the Kalman′s basic work, many extensions and
generalizations were developed to deal with the case where
the conditions of standard Kalman filter cannot be strictly
satisfied[4−5]. Stanley F. Schmidt adopted the idea of lin-
earization around the trajectory and solves filtering and
prediction problems of nonlinear systems in the 1960s,
which was named as extend Kalman filter (EKF) later[6−7].
Using the idea of Taylor expansion, the EKF tries to ap-
proximate nonlinear systems as time-varying linear models
and then uses the standard Kalman filter to estimate un-
known states. Then Carlson presented a federal Kalman
filter (FKF)[8] algorithm to deal with multi-system optimal
data fusion problem. Julier et al. and Uhlmann introduced
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the so-called unscented Kalman filter (UKF)[9−10] for non-
linear estimation in 1997. Compared with the EKF algo-
rithm, the UKF algorithm could obtain a more accurate
estimation with a greater computation cost. The robust
Kalman filter (RKF)[11] was presented to solve the prob-
lem that the system model cannot be obtained accurately.
Then the adaptive Kalman filter (AKF)[12−13] was used to
deal with the problem that system parameters are uncer-
tain or cannot be accurately obtained.

In all these existing works, the objective is to obtain
good de-noising and estimating effects when the system
model has small uncertainty or the statistical properties
of the process and observation noises are uncertain. The
filtering and prediction problems when system models have
large uncertainty were seldom addressed. In the presence
of large model uncertainty, generally speaking, the stan-
dard Kalman filter cannot work well and there is no way
to ensure its stability and convergence. Due to this chal-
lenging problem, in the applications of Kalman filters, we
usually need to make great efforts in the modeling of errors
by a large number of high-cost experiments so as to gain
a model which is accurate enough for use with the stan-
dard Kalman filtering technique. This traditional approach
also has the disadvantage of sensitivity to model drifting or
model changes due to unexpected or unobserved uncertain
issues like system faults.

Motivated by the above challenging problems, based
on our previous pioneering work on finite-model adaptive
control[14−16], a framework of finite-model Kalman filter
(FMKF) is presented in this paper. In this framework, a
finite-model Kalman filter may adaptively adjust its active
model or parameters so as to reduce the model uncertainty
and then make filtering and prediction based on a bank of
parallel Kalman filters, which interchange information and
share some common information for the purpose of predic-
tion. Within this framework, the finite-model Kalman filter
algorithms aim to resolve filtering and prediction problems
when the system has large model uncertainty.
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To illustrate the idea of the finite-model Kalman filter,
one simple algorithm within the framework of FMKF is
presented based on the idea of adaptive switching via the
minimizing vector distance principle. The mathematical
form of the proposed algorithm is explicitly given in this
contribution, which consists of a group of iterations regard-
ing the switching sequence, bank filter prediction, and the
measurement update. The simulations and experiments
show that the proposed method can effectively deal with
MEMS gyroscope noise signal and improve the precision of
the measurement data.

The main contributions of this paper are highlighted as
follows:

1) A framework of finite-model Kalman filter is presented
to resolve the problem of performance degradation of the
standard Kalman filter, with the aid of measurement infor-
mation rather than innovation information alone when the
system model is uncertain in a large range.

2) A simple finite-model Kalman filter algorithm based
on adaptive switching via the minimizing vector distance
principle, termed as FMKF-MVDP, is proposed and math-
ematically formulated to illustrate the presented framework
of finite-model Kalman filter.

3) To verify the effectiveness of the proposed simple
finite-model Kalman filter, extensive simulations and ex-
periments are conducted and the results show that this al-
gorithm has satisfactory filtering effects when the system
model is inaccurate in a large range.

The rest of this paper is organized as follows: In Section
1, the standard Kalman filter is reviewed with mathemati-
cal equations for convenience of later discussions; then, we
resolve the challenging filtering problem for state estima-
tion in presence of large model uncertainties, based on the
key idea borrowed from our previous studies on finite model
adaptive control. Section 2 introduces a general framework
of finite-model Kalman filter, within which a simple finite-
model Kalman filter, termed as MVDP-FMKF, according
to the idea of adaptive switching via the minimizing vector
distance principle, is mathematically formulated in Section
3 and verified through simulations in Section 4, which illus-
trate the usefulness of the proposed algorithm. To further
check whether the proposed algorithm can work well in
practical navigation systems, some experimental tests on
an MEMS gyroscope, MEMS130, are discussed in Section
5, which validate the effectiveness and usefulness of the
MVDP-FMKF algorithm. Finally, Section 6 summarizes
this paper with some concluding remarks.

1 Kalman filter

In 1960, Kalman published his famous paper describing a
recursive solution to the discrete-time linear filtering prob-
lem. Since then, due to the advance in digital computing,
the Kalman filter has been a subject of extensive research
and application, particularly in the area of autonomous or
assisted navigation[17].

The Kalman filter is a set of mathematical equations that
provides an efficient computational (recursive) means to
estimate the state of a process, in a way that minimizes the
mean of the squared errors. The filter is very powerful since
it can be used to estimate states in the past, at present, and
even in the future.

It is the core of the program to design Kalman filter′s ob-

servation update and state update. Suppose that the state
xk to be estimated is governed by the following dynamics

{
xk = φk,k−1xk−1 + Γk−1wk−1

zk = Hkxk + vk
(1)

where φk,k−1 is the transfer matrix, Hk is the observation
matrix, wk is the process noise sequence, vk is the measure-
ment noise sequence, and zk represents observable measure-
ments at time tk.

If the system noise and observation noise are zero-mean,
Gaussian and uncorrelated, then x̂k, the estimate of xk,
can be recursively obtained by the following equations[3]:





x̂k,k−1 = φk,k−1x̂k−1

x̂k = x̂k,k−1 + Kk(zk −Hkx̂k,k−1)

Pk,k−1 = φk,k−1Pk−1φ
T
k,k−1 + Γk−1Qk−1Γ

T
k−1

Kk = Pk,k−1H
T
k (HkPk,k−1H

T
k + Rk)−1

Pk = (I −KkHk)Pk,k−1

(2)

2 Framework of finite-model Kalman
filter

The standard Kalman filter is optimal in the sense of
minimum mean squared errors and maximum likelihood
estimation, provided that the system model is linear and
precisely known a priori; and the process noise and the mea-
surement noise are jointly Gaussian and uncorrelated with
known covariance matrices. However, in practice, these
requirements can seldom be satisfied due to the following
problems:

1) The practical systems are usually nonlinear although
many of them may be approximated by linear systems. Ab-
solutely linear systems seldom exist in practical applica-
tions.

2) Even if the practical system in consideration is linear,
the system model may not be exactly known with accurate
parameters. In practice, model parameters may be approx-
imately identified by applying some system identification
methods offline through the data obtained via extensive
experiments. However, the cost of this approach is usually
expensive and does not guarantee accurate system identifi-
cation, which may result in poor performance of standard
Kalman filter for the identified model. Furthermore, if the
practical system is in fact time-varying, then the approach
of system identification will fail sometimes.

3) The standard Kalman filter requires that the process
noise and the measurement noise be zero-mean and uncor-
related Gaussian random noise. However, in some applica-
tions, the noise may be biased and its mean or mathemat-
ical expectation may be unknown. In such cases, further
noise modeling is often needed and it is possible to use a
Kalman filter by augmenting the mean of the noise as an
extra state.

4) In most cases, we cannot have the covariances of the
unknown process noise and measurement noise a priori.
Therefore, to apply the standard Kalman filter, we must
first try to obtain the statistical properties of the process
noise and the measurement noise, which are usually calcu-
lated from extensive experiments. To deal with this prob-
lem, an alternative approach is to simply use larger covari-
ances to represent the a priori knowledge on the process
noise and measurement noise.



1248 ACTA AUTOMATICA SINICA Vol. 39

5) In practice, the probability distribution of the process
noise or the measurement noise may not be normal distribu-
tion, and this case is often termed as non-Gaussian system,
which often results in poor performance of the standard
Kalman filter.

Due to the above problems, to resolve these practical
problems to some extent, some extensions or variants of
the standard Kalman filter have been proposed in the litera-
ture. For example, for problem 1), the EKF is one approach
to apply the technique of Kalman filter to nonlinear systems
based on the idea of Taylor expansion, while the UKF[18]

and particle filters (PF)[19] are two typical approaches to
handle filtering problem for nonlinear/non-Gaussian sys-
tems of problem 2) or problem 5). Comparing with others
problem 3) may be relatively easy to resolve, and one typ-
ical approach in the one mentioned above if we have some
physical or a priori knowledge on the sources of possible
errors in the sensors. As to problem 4), there exists one
approach called adaptive Kalman filter (AKF)[13], whose
idea is to adaptively estimate the unknown statistical prop-
erties of the noises and combine the Kalman filter with the
estimation process. And the Kalman filter based on the
support vector machine (SVMKF)[17] may be regarded as
another example to deal with problem 4).

In this paper, our general framework of finite-model
Kalman filter is mainly motivated by the thoughts to the
difficult problem 2), which is less discussed in the litera-
ture. It is well known that inaccurate model will degrade
the performance of Kalman filter or even make it divergent.
To address such a problem, besides the approach of sys-
tem identification by expensive experiments, one approach
called robust Kalman filter (RKF) was discussed in [20].
The basic idea of the RKF is rooted from the research on
robust control, whose key concepts are nominal model and
stability margin as well as certain performance index like
H∞ norm. Roughly speaking, the robust Kalman filter can
only deal with small model uncertainty due to its nature of
worst-case analysis.

When the system model is unknown in a large range,
the approach of RKF will fail. Noticing this challeng-
ing yet critical problem, we present a kind of framework
of finite-model Kalman filter (FMKF), which is motivated
by our previous study on the finite-model adaptive con-
trol (FMAC), whose general framework was firstly estab-
lished by Ma[21]. The essential idea is that large model un-
certainty can be approximated by a finite bank of known
models and hence adaptive control law can be constructed
from the control signals designed for the known finite mod-
els, no matter whether the known models are similar or
not. To this end, several typical algorithms of FMAC
were proposed, including the LS-like algorithm[14], WLS-
like algorithm[15] and other algorithms[16], whose rigorous
closed-loop stability analysis can be found. Among these
algorithms, the LS-like algorithm generates a switching sig-
nal among a bank of models at each step by minimizing
the equally weighted sums of pth power of errors, while the
WLS-like algorithm generates a switching signal at each
step by minimizing a similar weighted performance with
a forgetting factor, and other types of FMAC algorithms
adopt other ideas like adaptive combination rather than the
idea of switching among the models.

Following the idea of FMAC, we present the overall back-

ground of FMKF. Suppose that we have a finite bank of
known models, and each model can be described by the
following state-space equations

Mi :

{
xk+1 = fi(xk, uk, wk)

zk = hi(xk, uk−1, vk)
(3)

where xk is the state at time k, uk is the control at time k,
zk is the output at time k, wk is the process noise at time
k, and vk is the measurement noise at time k. Here func-
tions fi and hi are known mappings to describe the state
evolution and output measurement for model Mi (i = 1, 2,
· · · , N). Hence, model Mi can be formally described by a
triple (fi, hi,Ni), where Ni denotes the a priori knowledge
on wk and vk, which may be presented by statistical prop-
erties or probability distributions of the process noise and
the measurement noise.

For simplicity and brevity, we consider only linear Gaus-
sian models without control like

Mi :

{
xk+1 = φ

(i)
k+1,kxk + Γ

(i)
k wk

zk = H
(i)
k xk + vk

(4)

where wk and vk are zero-mean jointly Gaussian noises with

covariances Q
(i)
k and R

(i)
k , respectively. Hence, model Mi

can be presented by matrices φ
(i)
k+1,k, Γ

(i)
k , H

(i)
k and Q

(i)
k ,

R
(i)
k . Obviously, for each fixed model Mi, since its model

is accurate with exact parameters, we can design a stan-
dard Kalman filter to estimate its state xk via its output
sequence {zk}.

Now we consider a practical uncertain system, whose
true model is not known a priori. In this case, it is im-
possible to design a Kalman filter for this system since the
implementation of Kalman filter requires that all matrices
φk+1,k, Γk, Hk, Qk, and Rk be available at each time step.
For this challenging problem, from the perspective of fi-
nite models, suppose that we have enough known different
models M = {M1,M2, · · · ,MN}. For the uncertain true
system, there exists a model MI ∈M, where subscript I is
not known a priori, such that the input-output behavior of
model MI can approximate that of the true system. The
key idea of the FMKF is to use Kalman filters for known
models to construct state estimates for the true unknown
system by making full use of posterior data at each step.

In the framework of FMKF, there may exist different
methods for the purpose of constructing state estimates
from the parallel Kalman filters for known models. At
each time step k, the Kalman filter for model Mi involves

two steps: the prediction step is to propagate x̂
(i)
k−1,k−1 to

x̂
(i)
k,k−1 according to the state equation of model i, while the

correction step is to correct x̂
(i)
k,k−1 to x̂

(i)
k with the available

new measurement zk using the optimal Kalman gain K
(i)
k ,

computed from known system matrices. Now, one natural
problem will arise: How do we determine the best estimate
x̂k of the true system state xk from the N different esti-

mates x̂
(i)
k (i = 1, 2, · · · , N)? In other words, can we have

some reasonable or useful rules, termed as model switching

for convenience, to decide which x̂
(i)
k can serve as an esti-

mate x̂k of xk? Or can we have some reasonable or useful
rules, termed as model combination/fusion for convenience,

to combine or fuse all x̂
(i)
k (i = 1, 2, · · · , N) so as to yield
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x̂k? Once x̂k can be determined at time k, then in the next
step, the Kalman filters for all models may reset their ini-

tial conditions x̂
(i)
k to the same x̂k and use it to give new

estimates x̂
(i)
k+1,k and x̂

(i)
k+1,k+1, which continues the overall

loop of filtering. The research of the FMKF is to figure
out such possible rules, to verify its usefulness or effective-
ness, to analyze its closed-loop properties, and to explore
its wide applications. Obviously, the FMKF architecture,
which is briefly illustrated in Fig. 1, involves a kind of on-
line learning/adaptation mechanism, and such mechanism
will make it possible to cope with the challenging problems
of filtering, prediction, and control for systems with large
model uncertainty or time-varying model drift.

Fig. 1 Architecture of finite-model Kalman filter system

Remark 1. In the general framework of the FMKF, the
true model can be time-invariant or slow time-varying yet
unknown. Note that in practice we usually cannot find out
a governing rule or models transition probability matrix to
describe the switching. And furthermore, in the framework
of FMKF, the unknown true model need not be one mem-
ber of the bank of known models. In our framework, the
known models need not have similar structures or same di-
mensions. The essential idea of FMKF borrows from the
so-called “finite cover” concept, which makes it possible to
approximate the true model with the known finite models.

Remark 2. As depicted in Fig. 1, there may exist many
ways to approximate the true model with the known finite
models, that is to say, the so-called model adaptation law is
not unique. In certain situations, several known existing al-
gorithms like autonomous multiple models (AMM)[21] and
interacting multiple models (IMM)[14] may be also regarded
as special cases of the FMKF. For example, the AMM al-
gorithm requires that the true operating mode, which does
not change in time, matches a model among the ones in the
set. For another example, the key idea behind the IMM
algorithm is to assume that the mode jump process is a
Markov process, with known mode transition probabilities.
The AMM algorithm and IMM algorithm are two ways of
combining the estimates from known finite models using
the concepts of model likelihood and mode probability.

Remark 3. In the framework of FMKF algorithm, we
try to make full use of the measurement sequences to judge
the system model. Traditional multiple models (MM) al-
gorithms, such as AMM and IMM, always try to judge the
system model according to the innovation sequence. In this
section, we give a new framework that judges the system
model according to measurement sequence rather than the
innovation sequence. Note that in Fig. 1, there is a certain

block data assimilation, i.e., collection and processing of the
measurement data for the purpose of model adaptation,
which distinguishes the FMKF from the traditional MM
framework since the MM only uses innovation sequence.
Such an idea will be demonstrated by an example of an
FMKF-MVDP algorithm in the next section. This design
is because in practice we believe that the system model in-
formation is embedded in the input/output sequence and a
correct system model should match the measurement data,
and generally speaking, measurement sequence may con-
tain more information than the innovation sequence.

3 MVDP finite-model Kalman filter al-
gorithm

In this section, within the general framework of FMKF
given in Section 3, a kind of FMKF algorithm, called finite-
model Kalman filter based on the minimum vector distance
principle (MVDP-FMKF), will be presented.

Suppose that the true system model is S ∈ M, where
M = {M1,M2, · · · ,MN}. The finite known models can be
very different in terms of their related matrices. Since we
do not know which model can represent the true system, we
try to guess which model may match the output data best
at each step. As to the Kalman filter for model Mi, at time

step k it will generate a state estimate x̂
(i)
k , consequently,

we can define an output prediction ẑ
(i)
k as

ẑ
(i)
k = H

(i)
k x̂

(i)
k (5)

Suppose that there exists such a function di(·) defined
as

di(k) =
∥∥∥fzk − f

ẑ
(i)
k

∥∥∥
2

, i = 1, 2, · · · , N (6)

where fzk and f
ẑ
(i)
k

are to be discussed later by example.

Intuitively, we construct fzk and f
ẑ
(i)
k

at each time step

k, which can be used to measure the discrepancy of the
actual output data and the estimated output data using
model Mi. If we introduce

ik = arg min
1≤i≤N

‖di(k)‖ (7)

then the ikth system modelMik can be treated as the active
model, i.e., the most matching model in a certain sense,
at time step k. That is to say, we could try to find a
function of the measurement zk and the filtering output

ẑ
(i)
k of the ith system model, which is used to measure the

extent of matching between the true system and the chosen
ith model.

The system block diagram is shown in Fig. 2.
The rest of this section is to give an example of such a

function di(k) and present the new algorithm. Note that
there exist alternative meaningful approaches to construct
di(k), fzk and f

ẑ
(i)
k

, hence the principle introduced in this

paper can be flexibly used in various applications and fur-
ther investigation in the future is necessary to explore more
possible suitable schemes.

3.1 Derivation of dididi

First, expressions for fzk and f
ẑ
(i)
k

are given below. Let

j = 1, · · · , 2∆ + 1 and let zk(j) = zk−j+1 be the measure-
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ment data in the time window of length 2∆+1 before time
step k. A second-order polynomial has the form

fzk (j) = α0 + α1j + α2j
2 (8)

and the coefficients α0, α1, and α2 are determined in a least
squares sense by minimizing

2∆+1∑
j=1

(
zk(j)− (α0 + α1j + α2j

2)
)2

(9)

Fig. 2 Structure of MVDP finite-model Kalman filter system

Remark 4. The choices of fzk are not unique, and
other forms except for the second-order polynomial may be
also feasible. The intuitive meaning of fzk is to approx-
imate local data of zk(j) in a small time window. Note
that in practice the sampling interval of measured data is
very small, hence locally speaking, the data of zk(j) will be
smooth in the certain sense. Considering the trade-off be-
tween the computation cost and approximation effect, we
choose a second order polynomial to capture the basic na-
ture of the data, and in this way only three parameters are
needed to determine.

Using the notation (9), it can be obtained that




1 1 1

1 2 4
...

...
...

1 2∆ + 1 (2∆ + 1)2







α0

α1

α2


 =




zk(1)

zk(2)
...

zk(2∆ + 1)




(10)
Introducing the notation

M =




1 1 1

1 2 4
...

...
...

1 2∆ + 1 (2∆ + 1)2


 (11)

Zk =




zk(1)

zk(2)
...

zk(2∆ + 1)


 (12)

and noting that [α0, α1, α2]
T = (MTM)−1MTZk, we can

get
fzk = M(MTM)−1MTZk (13)

Similarly, we construct a second-order polynomial of the
form

fẑk (j) = α̂0 + α̂1j + α̂2j
2 (14)

where coefficients α̂0, α̂1, and α̂2 are determined in a least
squares sense by minimizing

2∆+1∑
j=1

(ẑk(j)− (α̂0 + α̂1j + α̂2j
2))2 (15)

Consequently, we have similar results

[α̂0, α̂1, α̂2]
T = (MTM)−1MTẐk (16)

and

fẑk = M(MTM)−1MTẐk (17)

where

Ẑk =




ẑk(1)

ẑk(2)
...

ẑk(2∆ + 1)


 (18)

After that, we can write

di(k) =
∥∥∥M(MTM)−1MT(Zk − Ẑk)

∥∥∥
2

(19)

3.2 Two-model MVDP-FMKF algorithm

In this subsection, we first discuss the MVDP-FMKF al-
gorithm when we have two alternative models. The process
could be divided into two parts.

1) Initialization. The first step is initializing the filter
parameters,

P
(1)
0 = P0

P
(2)
0 = P0

x̂0 = x̄0

(20)

where P0 is a positive definite matrix and x̄0 can be taken as
E[x0] (if E[x0] is available a priori) or any vector of proper
dimension (e.g. zero vector) (if we have not any knowledge
on E[x0]).

2) Filtering loop. The second step is filtering the original
signals using the known linear system models for k = 1, 2,
3, · · · :





x̂
(1)
k,k−1 = φ

(1)
k,k−1x̂k−1

P
(1)
k,k−1 = φ

(1)
k,k−1Pk−1φ

(1)T
k,k−1 + Γ

(1)
k−1Q

(1)
k−1Γ

(1)T
k−1

K
(1)
k = P

(1)
k,k−1H

(1)T
k (H

(1)
k P

(1)
k,k−1H

(1)T
k + R

(1)
k )−1

P
(1)
k = (I −K

(1)
k H

(1)
k )P

(1)
k,k−1

x̂
(1)
k = x̂

(1)
k,k−1 + K

(1)
k (zk −H

(1)
k x̂

(1)
k,k−1)

ẑ
(1)
k = H

(1)
k x̂

(1)
k

(21)



x̂
(2)
k,k−1 = φ

(2)
k,k−1x̂k−1

P
(2)
k,k−1 = φ

(2)
k,k−1Pk−1φ

(2)T
k,k−1 + Γ

(2)
k−1Q

(2)
k−1Γ

(2)T
k−1

K
(2)
k = P

(2)
k,k−1H

(2)T
k (H

(2)
k P

(2)
k,k−1H

(2)T
k + R

(2)
k )−1

P
(2)
k = (I −K

(2)
k H

(2)
k )P

(2)
k,k−1

x̂
(2)
k = x̂

(2)
k,k−1 + K

(2)
k (zk −H

(2)
k x̂

(2)
k,k−1)

ẑ
(2)
k = H

(2)
k x̂

(2)
k

(22)
Then we can calculate di(k) with the output of a different

filter ẑi
k as follows

di(k) =
∥∥∥fzk − fẑi

k

∥∥∥
2

, i = 1, 2 (23)
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Then, we choose the active model by the minimizing vector
distance principle and update x̂k and Pk as follows

a) If

d1(k) ≤ d2(k) (24)

then ik = 1 and we set

Pk = P
(1)
k

x̂k = x̂
(1)
k

(25)

b) Otherwise, we have ik = 2 since

d1(k) > d2(k) (26)

Then, we set

Pk = P
(2)
k

x̂k = x̂
(2)
k (27)

3.3 General MVDP-FMKF algorithm

Similarly, we can introduce the general MVDP-FMKF
algorithm as follows:

1) Initialization.

P
(i)
0 = P0, i = 1, 2, · · · , N

x̂0 = x̄0 (28)

2) Filtering loop. At time step k, for each model Mi (i
= 1, 2, · · · , N), the following Kalman iterations are made
first:

x̂
(i)
k,k−1 = φ

(i)
k,k−1x̂k−1

P
(i)
k,k−1 = φ

(i)
k,k−1Pk−1φ

(i)T
k,k−1 + Γk−1Qk−1Γ

T
k−1

K
(i)
k = P

(i)
k,k−1H

T
k (HkP

(i)
k,k−1H

T
k + Rk)−1

P
(i)
k = (I −K

(i)
k Hk)P

(i)
k,k−1

x̂
(i)
k = x̂

(i)
k,k−1 + K

(i)
k (zk −Hkx̂

(i)
k,k−1)

ẑ
(i)
k = Hkx̂

(i)
k (29)

Then we can calculate di(k) as follows

di(k) =
∥∥∥fzk − fẑi

k

∥∥∥
2

, i = 1, 2 (30)

where fzk and fẑi
k

are introduced before. Then, according

to the minimizing vector distance principle, x̂k and Pk can
be updated by

Pk = P
(ik)
k

x̂k = x̂
(ik)
k (31)

where

ik = arg min
i∈{1,2,··· ,N}

di(k) (32)

Repeat the above steps for each time step k.

4 Simulation of the MVDP-FMKF al-
gorithm

In this section, some simulation results are reported to
illustrate the effects of the MVDP-FMKF algorithm.

4.1 One-dimensional simulation

We consider the following simple scalar system

{
xk = θxk−1 + wk−1

zk = xk + vk
(33)

where E(wk) = E(vk) = 0, Var(wk) = Var(vk) = 0.1, and θ
= 1.

Suppose that the precise value of θ is unknown a priori,
and that we only know θ ∈ {0.1, 1, 5}. Obviously, a single
Kalman filter cannot make sure to generate reliable state es-
timates. In this simulation, we have 3 models, and Kalman
filters are designed for θ = 0.1, 1, 5, respectively. The true
value of θ is randomly taken from the set {0.1, 1, 5} and
then fixed for simulation. The simulation results of the
MVDP-FMKF algorithm compared with KF, AMM, and
IMM are shown in Figs. 3∼ 5, where the true value of θ is
1. For comparison, besides the results of the MVDP-FMKF
algorithm, the ideal results of the ideal Kalman filter using
the true system parameter (θ = 1), the non-ideal results
of the Kalman filter using the wrong system parameter (θ
= 0.1), the non-ideal results of the Kalman filter using the
wrong system parameter (θ = 5), AMM and IMM algo-
rithms are also illustrated.

Fig. 3 Simulation results of one-dimensional

MVDP-FMKF algorithm

Fig. 4 Traditional Kalman filter using wrong model parameter

θ can lead to growth of estimation errors
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Fig. 5 Performance comparison of MVDP-FMKF,

AMM and IMM algorithms

From Figs. 3 and 4, it can be seen that the de-noising ef-
fect of MVDP-FMKF is almost equal to the ideal Kalman
filter with precise system parameters, and the state esti-
mate errors will diverge with wrong system models (θ = 0.1
and θ = 5). That is to say, the MVDP-FMKF can choose
the right system model with a large probability and lead
to acceptable de-noising effect when the system parameters
cannot be obtained precisely.

From Fig. 5, it can be seen that the de-noising effect of
the MVDP-FMKF is comparable with those of the AMM
and IMM algorithms. However, the MVDP-FMKF algo-
rithm does not need to calculate the model likelihood and
mode probability, especially exponential functions. That is
to say, the MVDP-FMKF algorithm has a smaller compu-
tation cost compared with the AMM and IMM algorithms.
Besides, the MVDP-FMKF does not need to know the so-
called TPM (transition probability matrix).

Remark 5. Computation cost is very important for a
practical system to deal with the signal a real-time. Espe-
cially, in an integrated inertial navigation system, there are
many filtering blocks, and the computation effort is more
important than the precision in some aspects. In an inte-
grated inertial navigation system, the MVDP-FMKF can
be used to deal with a gyroscope output signal. With a
low computation cost, the filter has been proved in prac-
tice to be able to obtain acceptable results and satisfy the
real-time performance.

Besides, the AMM and IMM algorithms cannot deal with
the estimating problem when the system models Mi have
different dimensions.

Remark 6. Nowadays, the multiple models used by the
existing multiple model estimators need not have the same
dimension or structure. A very typical example in the tar-
get tracking area is the use of the constant velocity motion
model and constant acceleration model. For sure, these two
models have different dimensions. But they just use the
common state variable information to get estimating state
and abandon private state variable information. That is to
say, the multiple models (MM) algorithms were designed to
deal with system model set with the same dimensions al-
though they can obtain good results in the model set with
different dimensions. In the framework of FMKF, gener-
ally it is not necessary to require that all models share

some common states.
For the system shown in (33), suppose that the precise

value of θ is unknown a priori, and that we only know θ ∈
{0.1, 5} or the system model is as follows

[
xk

δk

]
=

[
1 1

0 1

] [
xk−1

δk−1

]
+

[
1

0

]
wk−1

zk =
[

1 0
] [

xk

δk

]
+ vk (34)

Remark 7. The model in (34) is a different system
model. The MVDP-FMKF demands that the model set
should have at least one or more models that can describe
the system motion exactly or roughly at every moment.
But in this example, the first and second models cannot
describe the system motion. So we build a model (34) to
describe the system motion to satisfy the MVDP-FMKF
demand. We use this example to demonstrate that the
MVDP-FMKF method can be applied in the cases of mul-
tiple different types of models.

Under this situation, the AMM algorithm and IMM algo-
rithm cannot generate system state estimates because the
system model set contains models with different dimen-
sions, which obviously makes it difficult to introduce and
calculate the likelihood function for each model candidate.
And the transition probability matrix of the system model
set is also unknown, which is another factor to limit the use
of the AMM and IMM algorithms. Whereas, the MVDP-
FMKF can deal with these estimation problems since the
principle of MVDP optimization can be applied to models
of any dimensions and the transition probability matrix is
not necessary.

The simulation results are shown in Fig. 6, where the
index in the top-left subfigure takes values of 1 (θ = 0.1),
2 (θ = 1), and 3 (θ = 5), respectively. It can be seen
that the MVDP-FMKF can deal with mixing-dimension
system state estimating problems. And it can also yield
an acceptable filtering performance even when the system
model does not contain the precise system model.

Fig. 6 Simulation results of mixing-dimensional

MVDP-FMKF algorithm

4.2 Multi-dimensional simulation

In this part, a multi-dimensional MVDP-FMKF simula-
tion is presented. The true system model is given as follows:
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[
x1(k)

x2(k)

]
=

[
1 0

0 1

] [
x1(k − 1)

x2(k − 1)

]
+

[
w1(k)

w2(k)

]

[
z1(k)

z2(k)

]
=

[
1 0

0 1

] [
x1(k)

x2(k)

]
+

[
v1(k)

v2(k)

]

(35)
where E(wi) = E(vi) = 0, and Var(wi) = Var(vi) = 0.1
(i = 1, 2). Then the finite known models include three
models, among which one is the true system model, and
the other ones are similar to the true system model ex-

cept that its system transition matrix φk,k−1 is

[
5 0

0 5

]
or

[
2 0

0 2

]
rather than

[
1 0

0 1

]
. The filtering problem is to es-

timate the unknown states x1(k) and x2(k) in the presence
of large model uncertainty since the exact system model is
completely not known a priori. The simulation results are
shown in Figs. 7∼ 12, where the results of ideal Kalman fil-
ter using the precise system model are also plotted for the
purpose of comparison.

From the simulation results, it can be seen that in this
case of multi-dimensional simulation, the new algorithm

Fig. 7 Simulation results of multi-dimensional FMKF

algorithm for state x1(k)

Fig. 8 Traditional Kalman filter using a wrong model matrix

A can lead to growth of estimation errors for state x1(k)

Fig. 9 Performance comparison of MVDP-FMKF,

AMM and IMM algorithms for state x1(k)

Fig. 10 Simulation results of multi-dimensional FMKF

algorithm for state x2(k)

Fig. 11 Traditional Kalman filter using a wrong model matrix

A can lead to growth of estimation errors for state x2(k)
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Fig. 12 Performance comparison of MVDP-FMKF,

AMM and IMM algorithms for state x2(k)

could choose the right system model (A = I) as the active
one with a big probability and obtain state estimates almost
as precisely as the Kalman filter with the accurate system
model (A = I). Besides, the state estimate errors have a
diverging trend with wrong system models (A = 2I and A
= 5I). In other words, the new algorithm can also yield
acceptable de-noising effect when the true system model is
not precisely available.

5 Experimental tests

In this section, we choose an MEMS gyroscope to test
the proposed MVDP-FMKF algorithm. For the MEMS
gyroscope, the existence of random errors is the most im-
portant factor to influence its precision because uncertain
random errors cannot be simply compensated like unknown
yet constant drift error. Therefore, it is particularly crit-
ical to reduce random errors to improve the measurement
accuracy of MEMS gyroscope.

We used an MEMS130 gyroscope in the condition of
25 ◦C to test the practical performance of the MVDP-
FMKF algorithm. The shaft angle rate information of the
output data of the MEMS gyroscope was used as the orig-
inal data. The sampling period was T = 5ms.

In this experiment, two different models were used to test
the MVDP-FMKF algorithm. The first model was taken as
an ARMA(2,2) (auto-regressive and moving average) model
based on the zero drift data. And the second model was
an ARMA(2,2) model based on the constant output and
swing data.

The real-time filtering results of the gyroscope zero drift
are depicted in Fig. 13, where it can be seen that compared
with the first model and the second model, the MVDP-
FMKF has good de-noising effect for the gyroscope zero
drift output. From the value of θ, it can be seen that the
MVDP-FMKF algorithm switched between the first and
second system models. For the gyroscope signal generated
with zero drift (i.e., the first model), the MVDP-FMKF al-
gorithm has performance similar to the corresponding op-
timal Kalman filter using the first system model, while the
de-noised signal by the Kalman filter using the wrong model
(second model) is almost incorrect from its magnitude.

To test the gyroscope constant output, the real-time fil-
tering results are shown in Fig. 14. It can be seen that

when the gyroscope has a high constant output, the second
model has amplitude attenuation. But the MVDP-FMKF
does not have amplitude attenuation. The better filter-
ing results are automatically chosen by the MVDP-FMKF.
From the value of θ, we can see that the MVDP-FMKF al-
gorithm can adaptively choose the first system model when
the second model has big amplitude attenuation. For the
zero drift output signal, the algorithm can choose the sec-
ond model to improve de-noising effect at some time.

Fig. 13 For gyroscope constant angle rate output data, the

on-line filtering results depict the consistence of the

MVDP-FMKF algorithm and the Kalman filter based on the

first (correct) model

Fig. 14 For gyroscope constant angle rate output data, the

on-line filtering results depict the better performance of

MVDP-FMKF algorithm compared with the Kalman filtering

based on the second (wrong) model

To test the gyroscope swing by 20 Hz frequency of 0.3◦

amplitude, the real-time filtering results are shown in
Figs. 15 and 16. It can be seen that when the gyroscope
wings by 20 Hz frequency of 0.3◦ amplitude, the second
model has amplitude attenuation. But the MVDP-FMKF
does not have amplitude attenuation and it can follow the
gyroscope real-time output. That is to say, the MVDP-
FMKF has good real-time performance and the bandwidth
of the algorithm is more than or equal to 20Hz at least.

To test the gyroscope swing by 10Hz frequency of 1◦ am-
plitude, the real-time filtering results are shown in Figs. 17
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Fig. 15 For gyroscope angle swing output data (by 20Hz

frequency of 0.3◦ amplitude), the on-line filtering results depict

the successful tracking of the MVDP-FMKF algorithm for the

original output data

Fig. 16 For gyroscope angle swing output data (by 20Hz

frequency of 0.3◦ amplitude), the tracking performance of

MVDP-FMKF algorithm is similar to that of Kalman filter

based on the first model

and 18, where it can be seen that when the gyroscope
swings by 10Hz frequency of 1◦ amplitude, the second
model has amplitude attenuation. The MVDP-FMKF does
not have amplitude attenuation and it can follow the large-
amplitude high-frequency real-time output.

6 Conclusion

The Kalman filtering techniques have been widely used
in many applications, especially the navigation problems.
However, successful applications of standard Kalman filters
often require that the state-space model in use should be
accurate enough with exact system matrices or parameters
as well as proper a priori information of the process noise
and the measurement noise, which in fact requires people
to make great efforts in the modeling procedure before the
real application of Kalman filter. Generally speaking, ex-
act or perfect modeling is impossible or expensive in most
practical applications, and an inaccurate model often re-
sults in that the performance of Kalman filter is very poor
or completely not acceptable.

Fig. 17 For gyroscope angle swing output data (by 10Hz

frequency of 1◦ amplitude), the on-line filtering results depict

the successful tracking of MVDP-FMKF algorithm for the

original output data

Fig. 18 For gyroscope angle swing output data (by 10Hz

frequency of 1◦ amplitude), the tracking performance of

MVDP-FMKF algorithm is similar to that of Kalman filter

based on the first model

To address the crucial filtering degradation problem due
to the large model uncertainty, motivated by our previous
pioneering work on finite-model adaptive control, we have
introduced the idea of finite-model Kalman filtering, which
presumes that the large model uncertainty is restricted by
a finite set of known models. This assumption is not as
restrictive as it looks, since the known models can be very
different from each other, and the number of known mod-
els can be flexibly chosen so that the uncertain model may
always be approximated by one of the known models, al-
though the matched model is not a priori known.

Within the presented framework of finite-model Kalman
filter, we have mathematically formulated and illustrated
a simple finite-model Kalman filter, termed as MVDP-
FMKF, which adopts the idea of adaptive switching via
minimizing vector distance principle. Despite of the intu-
itive and easy-to-implement algorithm, its closed-loop sys-
tem is rather complex, which needs further investigation in
the future.

In this contribution, extensive simulations and an exper-
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iment of gyroscope drift have verified the effectiveness of
the proposed algorithm. Hence, the mechanism of finite-
model Kalman filter is useful and efficient in dealing with
large model uncertainties which may be frequently seen in
practical applications of Kalman filters and may degrade
the performance or even destroy the convergence or stabil-
ity of the standard Kalman filter. In summary, this intro-
duced method of finite-model Kalman filter has practical
significance in the inertial navigation systems, and may be
extended to other types of practical systems where Kalman
filtering techniques are required yet the system model is not
accurately known a priori.

In the future, to gain a deeper understanding of finite-
model Kalman filters, it is necessary to investigate more
FMKF algorithms, mathematically establish their stability
properties, and explore their wide applications.
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