
Vol. 39, No. 7 ACTA AUTOMATICA SINICA July, 2013

Coordination Control of Networked Euler-Lagrange

Systems with Possible Switching Topology
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Abstract This paper studies adaptive coordination control of Euler-Lagrange (EL) systems with unknown parameters in system
dynamics and possible switching topology. By introducing a novel adaptive control architecture, decentralized controllers are de-
veloped, which allow for parametric uncertainties. Based upon graph theory, Lyapunov theory and switching control theory, the
stability of the proposed algorithms are demonstrated. A distinctive feature of this work is to address the coordination control of
EL systems with unknown parameters and switching topology in a unified theoretical framework. It is shown that both static and
dynamic coordinations can be reached even when the communication is switching. Simulation results are provided to demonstrate
the effectiveness of the obtained results.
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The past few years have witnessed the burgeoning in-
terest in coordination control problems from a variety of
fields, including biology, physics, robotics and control engi-
neering. Generally, in a multi-agent system, agents coordi-
nate with each other within the group, which enables lots of
tasks that could not be fulfilled by solo systems and signif-
icantly promote the efficiency and the reliability of the sys-
tem. In fact, the coordination control of networked systems
can be treated as a special case of general synchronization
of complex networks[1−2], where each agent (or node) is a
fundamental unit, and can have different meanings in dif-
ferent situations, such as chemical substrates, microproces-
sors, computers, schools, companies, papers, webs, people,
and so on. So far, the coordination control has been used in
the field of wireless sensor network, spacecraft formation,
unmanned aerial vehicle (UAV) formation, etc.

Euler-Lagrange (EL) systems can describe a large class
of physical systems including mechanical and power sys-
tems, and the control of EL systems was a classical con-
trol problem in the 1980s and has both practical and the-
oretical interests[3−4]. Inspired by the concept of coordi-
nation control of multi-agent systems, recently a lot of ef-
forts have been made on studying the coordination control
of a group of networked EL systems using a distributed
control law[5−21]. For example, in [5] a distributed con-
troller was proposed to tackle the consensus of EL systems,
where Lyapunov theory and Matrosov theory were used
to demonstrate the stability. The finite-time coordination
control of EL systems was addressed in [6−7] where the
sliding mode controller technique was adopted. Various
distributed adaptive controllers were proposed in [8−18, 20]
to tackle the coordination control problem of EL systems
in the presence of parametric uncertainties. In these stud-
ies, distributed control laws were dictated by communica-
tion topologies which describe the information exchange
among different subsystems, and the communication topol-
ogy played an essential role in system characteristics.
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It is well known that the communication network is often
unreliable due to the package loss and message dropouts.
This property can be conveniently described by a dynamic
topology whose links may be disconnected at any time in-
stants. However, up to now, most of the aforementioned
studies on coordination control of EL systems are based on
the assumption that the communication topology is fixed
with an exception of [19−21]. Although the coordination
control problem seems to be much more simplified by this
assumption, the switching topology may deteriorate the
performance of system and even cause instability. On the
other hand, the parameters of system dynamics are usually
unknown or difficult to obtain, hence it is of great interest
to consider this factor when designing the controller.

In this paper, we propose a unified adaptive control ar-
chitecture which allows for both unknown parameters in
the system dynamics and the possible directed switching
topology. A distinct feature of this paper is that it compre-
hensively considers the distributed coordination control of
EL systems with both parametric uncertainty and switch-
ing topologies. The object is that a networked EL sys-
tem tracks a dynamic reference signal and reaches con-
sensus with these uncertain factors. The problem has
many applications such as spacecraft formation and mul-
tiple tele-operators, especially when communication links
are severely disturbed by factors such as the sun wind and
magnetic storm.

In contrast with [5−18] which addressed coordination of
networked EL systems with a fixed communication topol-
ogy, this paper considers the case where the communication
topology can switch. In contrast with [19, 21] which dealt
with EL systems with known parameters, this paper allows
for systems with parametric uncertainty. In contrast to [20]
where undirected and balanced directed topologies were re-
quired, our control algorithms allow for the most common
directed “quasi-strongly” connected topology which can be
easily satisfied in practical applications. Furthermore, in-
stead of rendering the state to asymptotically approach to
zero, our algorithm realizes dynamic tracking. We hence
extend [20] to a broader application scenario.

This paper is organized as follows. First, we introduce
some background on the dynamics of Euler-Lagrange sys-
tems and graph theory, and the problem formulation is es-
tablished. Main results on adaptive state consensus algo-
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rithms are provided in Section 1. In Section 2, a numerical
example is given to illustrate the effectiveness of the pro-
posed algorithm, and finally the results are summarized in
Section 3.

Notation 1. R = (−∞,∞), R>0 = (0,∞), R≥0 =
[0, ∞). λm{A} and λM{A} represent the minimum and
maximum eigenvalues of matrix A, respectively. ‖A‖ is the
norm of matrix A. |x| stands for the standard Euclidean
norm of vector x. For any function f : R≥0 → Rn, the
L∞-norm is defined as ‖f‖∞ = supt≥0 |f(t)|, and the L2-

norm as ‖f‖22 =
∫∞
0
|f(t)|2 dt. The L∞ spaces are defined

as the sets {f : R≥0 → Rn : ‖f‖∞ < ∞} and {f : R≥0 →
Rn : ‖f‖2 < ∞}, respectively.

1 Problem formulation and back-
ground

1.1 Euler-Lagrange dynamics

We consider a team of N networked EL systems (hence-
forth called agents) indexed by set I = {1, · · · , N}. EL
systems neglecting friction or other disturbances are for-
mulated by

M(qi)q̈i + C(qi, q̇i)q̇i + g(qi) = τ i(t) + τ ext,i(t) (1)

where qi ∈ Rp is the vector of generalized coordinates,
M(qi) ∈Rp×p is the symmetric positive-finite intertial ma-
trix, C(qi, q̇i)qi ∈ Rp is the vector of Coriolis and centrifu-
gal force, g(qi) is the gravitational force, τ i(t) is the vector
of inputs associated with the ith system, and τ ext,i(t) is
the disturbance force which is assumed to be unknown but
constant. Before proceeding, we give some fundamental
properties for system (1) that will be extensively exploited

in the following[19].
Property 1. The inertial matrix Mi(qi) is lower and

upper bounded, i.e.,

0 < λm{Mi(qi)}I ≤ Mi(qi) ≤ λM{Mi(qi)}I < ∞ (2)

Property 2. The Lagrangian dynamics is linearly pa-
rameterizable, i.e.,

M(qi)q̈i + C(qi, q̇i)q̇i + g(qi)− τ ext,i(t) =

Y (qi, q̇i, q̈i)θi = τ i(t)

where θi is a constant p-dimensional vector of parameters
whose elements include the link masses, moments of iner-
tial, etc., and Y (·) ∈ Rp×p is the matrix of known functions
of the generalized coordinates and their higher derivatives.

Property 3. Under an appropriate definition of matrix
C(qi, q̇i), matrix Ṁ(qi) − 2C(qi, q̇i) is skew-symmetric.
Therefore, for a given vector r ∈ Rp, it is easy to verify
that

rT(Ṁ(qi)− 2C(qi, q̇i))r = 0

Property 4[8]. Consider a mechanical system of the
form (1) and assume that q̇i, q̈i ∈ L∞. Then, the time

derivative of its Coriolis matrix Ċi(qi, q̇i) is bounded.

1.2 Graph theory

Graph can be conveniently used to represent the infor-
mation flow between agents. Let G = {V, E ,A} be an undi-
rected graph or directed graph (digraph) of order n with
the set of nodes V(G) = {v1, v2, · · · , vn}, the set of edges E
⊆ V × V, and a weighted adjacency matrix A = {aij} with
nonnegative adjacency elements aij . The node indices be-
long to a finite index set I = {1, 2, · · · , n}. An edge of G is

denoted by eij = (vi, vj) and it is said to be incoming with
respect to vj and outgoing with respect to vi. For a undi-
rected graph, ∀ i, j ∈ I, if (vi, vj) ∈ E(G), then (vj , vi) ∈
E(G), but this does not hold for digraph. The set of neigh-
bors of node vi is the set of all nodes which point to (com-
municate with) vi, denoted by Ni = {vj ∈ V : (vi, vj) ∈ E}.
The graph adjacency matrix A = [aij ], A ∈ RN×N , is such
that aij = 1 if eij ∈ E and aij = 0 if eij /∈ E . The in-degree

of vertex vi is denoted by di =
∑N

j=1 aji. Similarly, the

out-degree of a vertex vi ∈ G is denoted by di =
∑N

j=1 aij .

If the in-degree equals the out-degree for all vi ∈ V(G),
then the graph is said to be balanced. D = {dij} ∈ RN×N

is called the degree matrix of G. The Laplacian of G is
the matrix L = D −A. When G contains a spanning tree,
the Laplacian has a single zero eigenvalue and the corre-
sponding eigenvector is the vector of ones, 111; Moreover, all
the other non-zero eigenvalues are in the open right half
plane[22].

1.3 Instrumental lemma

Define

e(t) = xd(t)− x(t)

ẋr(t) = ẋd(t) + Λe(t)

r(t) = ẋr(t)− ẋ(t) = ė(t) + Λe(t) (3)

where xd(t), x(t) ∈ Rn, Λ ∈ Rn×n is a positive definite
matrix. With the following lemma, the stability of e(t) and
ė(t) can be concluded by studying r(t).

Lemma 1[23]. Let e(t) = h(t) ∗ r(t), where “∗” denotes
convolution product and h(t) = L−1(H(s)) with H(s) be-
ing an n × n strictly proper, exponentially stable transfer
function, L(−1) denotes the inverse transformation of the
Laplace manipulator. Then, r ∈ Ln

2 implies that e ∈ Ln
2 ∩

Ln
∞, ė ∈ Ln

2 , e is continuous and |e(t)| → 0 as t → ∞. If,
in addition, |r(t)| → 0 as t →∞, then |ė(t)| → 0.

For finite function families

F = {fp(x), p ∈ P} (4)

where P = 1, · · · , N and each fp(x) is a continuous vector
field of Rn such that fp(0) = 0,

Definition 1[24]. Let Ω be an open subset of Rn con-
taining the origin. We say that V (x) : Ω → [0, +∞) is a
common weak Lyapunov function for (4) if it is of class C1,
positive definite, and the following holds:

∆V (x) · fp(x) ≤ 0 (5)

for each x ∈ Ω and each p ∈ P . We say that V (x) is a
common strict Lyapunov function for (4) if in (5) the strict
ineuality holds for each x ∈ Ω\{0}.

Lemma 2[24]. Let V (x) : Ω → [0, +∞) be a weak com-
mon Lyapunov function for (4). Let l > 0 and let Ωl be the
connected component of the level set {x ∈ Ω : V (x) < l}
such that 0 ∈ Ωl. Assume that Ωl is bounded, and let

Z = {x ∈ Ω : ∃p ∈ P such that ∆V (x) · fp(x) = 0}
Finally, let M be the union of all the compact, weakly
invariant sets which are contained in Z ∩ Ωl. Then every
solution φ ∈ Sdwell such that φ(0) ∈ Ωl is attracted by M .

2 Coordination control under fixed
communication topology

In this section, we establish an adaptive architecture for
coordination control within fixed communication topolo-
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gies. We will point out in Section 3 that this architecture
is also well suited for the switching topology case.

Define the state error between the ith and the jth agents
as

eij(t) = qj(t)− qi(t), ∀ i ∈ {1, · · · , N}, ∀ j ∈ Ni(G) (6)

We choose the input for the ith agent as

τ i = M̂i(qi)λ
∑

j∈Ni(G)

ėij + Ĉi(qi, q̇i)λ
∑

j∈Ni(G)

eij + τ̄ i (7)

where M̂i(qi), Ĉi(qi, q̇i), i ∈ I are the estimates of the re-
spective matrices available at that instant, λ ∈ R>0, τ̂ ext,i

is the estimated external disturbance and τ i = Yiθ̂i + τ̄ i is
the synchronization force that will be defined in the sequel.
As the dynamics is linearly parameterizable, according to
Property 2, the following equation holds:

Yiθ̂i = M̂i(qi)λ
∑

j∈Ni(G)

ėij + Ĉi(qi, q̇i)λ
∑

j∈Ni(G)

eij − τ̂ ext,i

(8)
where Yi(qi, q̇i,

∑
j∈Ni(G) ėij ,

∑
j∈Ni(G) eij) is a known

function of the generalized coordinates, and θ̂i is the
time-varying estimates of the agent′s actual constant p-
dimensional inertial parameters given by θi. The force term

can therefore be written as τ i = Yiθ̂i+τ̄ i. For convenience,
we define the synchronization signal of the ith agent as

εi = −q̇i + λ
∑

j∈Ni(G)

eij (9)

Substituting (7) into (1) yields

Mi(qi)ε̇i + Ci(qi, q̇i)εi = Yiθ̃i − τ̄ i (10)

where θ̃i(t) = θi − θ̂i(t) is the estimation errors of param-
eters, and it evolves as

˙̂
θi = ΓiY

T
i εi (11)

with Γi being a constant positive definite matrix.
Up to now, we have established an adaptive coordination

control architecture. We show next that this architecture
is suitable for both the static regulation and the dynamic
tracking cases.

2.1 Regulation case

In order to regulate and coordinate the states of agents,
the following condition has to be fulfilled:

lim
t→∞

|qi(t)− qj(t)| = 0

lim
t→∞

|q̇i(t)| → 0, ∀ i, j ∈ I (12)

To this end, we choose τ̄ i = Kiεi (Ki ∈ R>0). Then the
result follows.

Theorem 1. Under the adaptive control architecture

(10) and Assumption 1, by choosing τ i = Yiθ̂i + τ̄ i, the
coordination control in the sense of (12) is achieved with
(7) and (11).

Proof. Define a positive semi-definite Lyapunov candi-
date function V : C → R+ for the system as

V (εi, θ̃i, eij) =
1

2

N∑
i=1

εT
i Mi(qi)εi +

1

2

N∑
i=1

θ̃
T

i Γ−1θ̃i (13)

The derivative of V (εi, θ̃i, eij) along the trajectory of (10)
is given by

V̇ (εi, θ̃i, eij) =

1

2

N∑
i=1

εTi Ṁi(qi)εi +

N∑
i=1

εT
i M i(qi)ε̇i +

N∑
i=1

θ̃
T

i Γ−1 ˙̃
θi =

1

2

N∑
i=1

εT
i Ṁi(qi)εi +

N∑
i=1

εT
i

(
Yiθ̃i − τ̄ i − Ci(qi, q̇i)εi

)
−

N∑
i=1

θ̃
T

i Y T
i εi =

N∑
i=1

εT
i (−τ̄ i) = −

N∑
i=1

εT
i Kiεi

(14)

where Property 3, (10) and (11) are used in the above

derivation. Since V ≥ 0 and V̇ ≤ 0, ∀ i ∈ I, εi(t) ∈ L2

and εi(t), θ̃θθi(t) ∈ L∞. Next, we show that |εi(t)| → 0. To
achieve this, we only need to show that ε̇i(t) ∈ L∞ ac-
cording to Barbalat′s Lemma. To this end, we rewrite the
second equation in (9) as

q̇(t) = −λ(L ⊗ I3)q(t) + I3×N ⊗ ε(t) (15)

where IN is the identity matrix with dimension N , q =
[qT

1 (t), · · · , qT
N (t)]T, ε = [εT

1 (t), · · · , εT
N (t)]T, “⊗ ” is the

standard Kronecker product, and L corresponds to the
Laplacian matrix. Under the assumption that the com-
munication graph contains a spanning tree, it can be con-
cluded that −L has exactly one zero eigenvalue and all the
other non-zero eigenvalues are in the open left half plane.
On the other hand, the transfer function between ε(t) and
q̇(t) of system (15) can be written as

T (s) =
sI3×N

sI3×N + λL ⊗ I3
(16)

Note that the characteristic poles of T (s) are just the
eigenvalues of −λL. Therefore, we conclude that T (s)
has exactly one zero pole and the other poles are located
in the open left-hand complex plane. By considering the
zero-pole cancelation in T (s), we conclude that this sys-
tem is stable. Since ε ∈ L∞, we have q̇ ∈ L∞ and thus∑

j∈Ni(G) ėij(t) ∈ L∞. By observing (9), since εi(t), q̇i(t)

∈ L∞, one has
∑

j∈Ni(G) eij(t) ∈ L∞. In addition, by

(8), one can show that the boundedness of Yi depends

on the boundedness of M̂i(qi),
∑

j∈Ni(G) ėij , Ĉi(qi, q̇i),∑
j∈Ni(G) eij , τ̂ ext,i and θ̂i, and it is independent of qi.

Then, by Property 1, Property 4, the boundedness of q̇i, θ̃i,∑
j∈Ni(G) ėij(t) and

∑
j∈Ni(G) eij(t), we conclude that Yi

is also bounded. Then, we further conclude that ε̇(t) ∈ L∞
according to (10). Therefore, |εi(t)| → 0, which implies
|q̇i(t)| → 0. Then, we conclude that |qi(t) − qj(t)| → 0,
∀ i, j ∈ I according to Theorem 3 in [25]. ¤
2.2 Dynamic tracking case

In this case, the control objective can be formulated as

lim
t→∞

|qi(t)− qd(t)| = 0

lim
t→∞

|q̇i(t)− q̇d(t)| = 0, ∀ i ∈ I (17)

where qd(t), q̇d(t) ∈ L∞. We redefine a new adjacency ma-

trix W = [wij ] ∈ R(N+1)×(N+1), where wij = aij , ∀ i, j ∈ I
and wi(N+1) = 1 if agent i has access to the reference and



1006 ACTA AUTOMATICA SINICA Vol. 39

0 otherwise, and w(N+1)k = 0, ∀ k ∈ {1, · · · , N + 1}. The
synchronization signal is defined as

ηi =
1

di

[
N+1∑
j=1

wij(q̇j − q̇i) +

N+1∑
j=1

wij(qj − qi)

]
,

i = 1, · · · , N

(18)

where di denotes the in-degree of the ith agent, qN+1 =
qd(t), and q̇N+1 = q̇d(t), namely, the reference is viewed
as a “virtual leader”, and is indexed by N +1. Correspond-
ingly, Yi is defined as

Yi = Mi(qi)

[
1+N∑
j=1

wij q̈j +

N+1∑
j=1

wij(q̇j − q̇i)

]
+

Ci(qi, q̇i)

[
N+1∑
j=1

wij q̇j +

N+1∑
j=1

wij(qj − qi)

]
− τ ext,i

(19)

Note that Yi depends on the states of agents and their first
and second-order derivatives. In practical implementation,
the second-order derivatives of the neighbors′ states can be
calculated by numerical differentiation. By choosing τ i =

Yiθ̂i + τ̄ i, it is easy to verify that the following equation
holds:

Mi(qi)η̇i + Ci(qi, q̇i)ηi =
Y θ̃i − τ̄ i

di
(20)

where θ̃θθi(t) = θi − θ̂θθi(t) is the estimation errors of param-

eters, and θ̂i(t) is updated by

˙̂
θθθi =

ΓiY
T

i ηi

di
(21)

where Γi is a positive definite matrix. Then, we have the
following result.

Corollary 1. Under the adaptive control architecture
(18)∼ (21) and if the directed graphW contains a spanning
tree, by choosing τ̄ττ i = Kiηi (Ki ∈ R>0, i ∈ N f ), then the
coordination control in the sense of (17) is reached.

Proof. By choosing the similar Lyapunov function with
(13)

V =
1

2

N∑
i=1

ηT
i Mi(qi)ηi +

1

2

N∑
i=1

θ̃θθ
T

i Γ−1θ̃θθi (22)

we can get its derivative as

V̇ = −
N∑

i=1

ηT
i Kiηi

di
(23)

Since di > 0, we have ηi ∈ L∞ ∩L2 according to the proof

of Theorem 1. It follows from Lemma 1 that
∑N+1

j=1 aij(qj

− qi) ∈ L∞,
∑N+1

j=1 aij(q̇j − q̇i) ∈ L∞ and

N+1∑
j=1

aij(qj − qi) → 0, i = 1, · · · , N (24)

We rewrite (24) in matrix form as (LN+1 ⊗ Ip)q → 0,
where q = [qT

1 , · · · , qT
N ], the square matrix LN+1 = [lij ] ∈

R(N+1)×(N+1) is defined as lii =
∑

j 6=i aij , lij = −aij , ∀ i
∈ I, and l(N+1)i = 0, ∀ i. Following the same procedure

as the proof of Theorem 3.3 in [26], it can be concluded
that qi → qj(t), ∀ i, j ∈ {1, · · · , N + 1} under Assumption
1. Then we get qi → qd(t) since qN+1 = qd(t). On the
other hand, following the same line as proof of Theorem
1, it can be concluded that ηi → 0. From Lemma 1, it

follows that
∑N+1

j=1 aij(q̇j − q̇i) → 0. It turns out that the

same procedure to prove qi → qd(t) can be used again to
show q̇i → q̇d(t). Therefore, the coordination control in
the sense of (17) is reached. ¤

Remark 1. The above discussions are based on the
assumption that the external disturbance τ ext,i is constant
and bounded. If this assumption is relaxed to unknown
time-varying but bounded disturbances, it can be shown
that the coordination can also be obtained by adopting the
sliding mode like technique. We present a brief discussion
as follows.

Suppose that the external disturbance τ ext,i ∈ L∞; ac-

cording to Property 2, we redefine Yiθ̂i as

Yiθ̂i = M̂i(qi)λ
∑

j∈Ni(G)

ėij + Ĉi(qi, q̇i)λ
∑

j∈Ni(G)

eij (25)

and τ̄ττ i as
τ̄ττ i(t) = Kiεi(t) + kisgn(εi(t)) (26)

where εi(t) is defined in (9), ki ∈ Rp
+ and sgn(·) is the sign

function. Then, the closed-loop dynamics becomes

Mi(qi)ε̇i + Ci(qi, q̇i)εi = Yiθ̃θθi − τ̄i − τ̂ext,i (27)

Using the same Lyapunov function as (13), we get its
derivative as

V̇ (εi, θ̃θθi, eij) =−
N∑

i=1

εT
i (Kiεi)−

N∑
i=1

εT
i (τ ext,i + kisgn(εi))

(28)

Denote v(m) as the mth element of vector v. Suppose that

the disturbances are bounded by
∣∣∣τ (m)

ext,i

∣∣∣ ≤ Υm
i , m = 1,

· · · , p. By choosing km
i = Υm

i + ηm
i , m = 1, · · · , p, where

ηm
i ∈ R+, we obtain

V̇ (εi, θ̃θθi, eij) ≤ −
N∑

i=1

εT
i (Kiεi)−

N∑
i=1

p∑
m=1

ηm
i |εm

i | (29)

Then, similar proof procedures as in Theorem 1 can be
employed to demonstrate the effectiveness of this method
to deal with the time-varying bounded disturbances. Also
note that in order to avoid the undesirable control chat-
ting, saturation functions sat(εm

i /φm
i ) can be used in place

of the switching function sat(εm
i ), with the φm

i represent-
ing the thicknesses of the corresponding “boundary lay-
ers”. However, when saturation functions are used, εi is
only guaranteed to converge to the bounded layers with
corresponding small tracking errors rather than zero. The
precise coordination will not be reached with the the time-
varying bounded disturbances.

3 Coordination control under switch-
ing topology

In this section, we deal with coordination control of EL
systems with switching topology. To this end, we assume
a finite set of graphs {Gp} with p ∈ P = {1, v, P}. At any
time t, one of the graphs {Gp} represents the topology of
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the communication network between agents. The switching
signal σ : [0,∞) → P determines the index of the active
graph at time t. First, we make some assumptions on in-
terconnection graphs and switching signal as follows.

Assumption 1. The switching signal σ is piecewise
constant from the right and non-chattering. If there are
infinitely many switching times, there exists a τ > 0 such
that for every T ≥ 0 we can find a positive integer i for
which ti+1 − τ ≥ ti ≥ T . In other words, we persistently
encounter intervals of length at least τ between switching
times.

Assumption 2. The communication topology {Gp} is
quasi-strongly connected for each p ∈ P = {1, · · · , P}.

Under the adaptive control architecture (10), let the syn-
chronization force be

τ̄ττσi(x, t) = Kiεi (30)

where εi is defined by (9). Then, we are ready to show
that even when the communication graph G is dynamic,
the coordination of the group is also reachable.

Theorem 2. Under Assumptions 1 and 2, and the adap-
tive control architecture (10), the coordination control in
the sense of (12) is achieved with (30), (7), and (11) for all
initial conditions.

Proof. The proof is based on the existence of a com-
mon weak Lyapunov function candidate for the switched
networked EL systems. Once existence of such a function
is shown, by invoking Lemma 1 one can conclude conver-
gence of ε to zero in the presence of a non-vanishing dwell
time between any two sequential switches.

Consider the following positive definite radially un-
bounded continuously differentiable Lyapunov function
candidate for the ith communication topology, where i ∈ I,
namely,

V (t) =
1

2

N∑
i=1

εT
i (t)Mi(qi)εi(t) +

1

2

N∑
i=1

θ̃θθ
T

i (t)Γ−1θ̃θθi(t) (31)

According to the proof of Theorem 1, the time derivative
of the above function is obtained as

V̇ (t) = −
N∑

i=1

εT
i Kiεi (32)

The above function is negative semi-definite with respect to
εi since the Laplacian matrix of the communication graph
is a positive semi-definite matrix. Consequently, εi, ∀ i
are stable and bounded. Noting the fact that the Lya-
punov function candidate is identical for all communication
topologies one concludes that the Lyapunov function (31)
is a weak common Lyapunov function for the considered
switched system. Let us define set H = {εi ∈ Rk, ∀ i ∈ I,

V̇ = 0}. Note that when V̇ = 0 we have εi = 0. Now, let
set H̄ be the largest weakly invariant set in H. On H̄ we
have εi = 0. By invoking Lemma 2, we conclude that under
non-vanishing dwell time εi converges to H. Consequently,
for the networked EL systems we have εi → 0 as t → 0.
Then similar procedures can be adopted as in the proof of
Theorem 1 to show that |qi(t) − qj(t)| → 0, and q̇i → 0,
∀ i, j ∈ I. ¤

Remark 2. In contrast to [20] where balanced topology
is required, we only need quasi-strongly connected topol-
ogy. In addition, the dynamic tracking can be fulfilled by
our method whereas the controller architecture only guar-
antees asymptotically stable in terms of both the state and
its first derivative.

Similar to Corollary 1, Theorem 2 can be easily extended
to the dynamic tracking case by noting that (22) is also a
weak common Lyapunov function.

Corollary 2. Under Assumptions 1 and 2, and the
adaptive architecture (18)∼ (21) and the assumption that
the directed graph W contains a spanning tree, by choosing
τ̄ττσi = Kiηi (Ki ∈ R>0, i ∈ N f ) where η is defined in (18),
the coordination control in the sense of (17) is reached.

Proof. The proof of Corollary 2 can follow the same as
Corollary 1 and Theorem 2 and is omitted here. ¤

4 Numerical simulation

In this section, we simulate scenarios where three two-
link manipulators reach state consensus through local com-
munication. We assume that the dynamicses of the manip-
ulators are identical. Note that the algorithms proposed in
this paper can also handle networked EL systems with a
different dynamics. The dynamicses of the two-link manip-
ulators are given as follows.

[
H11 H12

H21 H22

] [
q̈1

q̈2

]
+

[ −hq̇2 −h(q̇1 + q̇2)
hq̇1 0

] [
q̇1

q̇2

]
=

[
τ1

τ2

]

where

H11 = a1 + 2a3 cos q2 + 2a4 sin q2

H12 = H21 = a2 + a3 cos q2 + a4 sin q2

H22 = a2

h = a3 sin q2 − a4 cos q2

with

a1 = I1 + mll
2
c1 + Ie + mel

2
ce + mel

2
1

a2 = Ie + mel
2
ce

a3 = mel1lce cos δe

a4 = mel1lce sin δe

In this simulation, we use m1 = 1, l1 = 1, me = 2, δe = 30◦,
I1 = 0.12, lc1 = 0.5, Ie = 0.25, and lce = 0.6. For sim-
plicity, the communication topology is illustrated in Fig. 1.
According to Property 2, we choose θ = [a1, a2, a3, a4]

T,
and λ = I4×4. The corresponding Y (q, r) = [yij ] ∈ R2×4

is then defined as

y11 = ε̇1, y12 = ε̇2, y21 = 0, y22 = ε̇1 + ε̇2

y23 = ε̇1 cos(q̇2) + ε̇1q̇1 sin(q2)

y24 = −ε̇1q1 cos(q2) + ε1q̇1 sin(q2)

y13 = (2ε̇1 + ε̇2) cos(q2)− (q̇2ε1 + q̇1ε2 + q̇2ε2) sin(q2)

y14 = (2ε̇1 + ε̇2) sin(q2) + (q̇2ε1 + q̇1ε2 + q̇2ε2) cos(q2)

We set the parameters to be 70% of their real values.
The initial values of qi and q̇i are chosen randomly within
[−2.5, 2.5]. The reference signal qd(t) is chosen as qd(t) =
[1.25 cos2(0.25t), 0.8 sin(0.3t)], and the control gains are
chosen as K = 6, Γ = 2I4×4, and Λ = Γ.

The simulation was conducted in Wolfram
Mathematica c© 7, and the case of dynamic tracking
in the leader-follower framework was studied, where agent
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ref is designated as the virtual leader. We first simulated
the case of dynamic tracking under a static topology which
is shown in Fig. 1. Figs. 2∼ 5 show respectively the joint
angels and their derivatives of the agents. It can be seen
from the results that the dynamic tracking is attained.

Fig. 1 Communication topology

Fig. 2 Convergence of q(1) within static topology

Fig. 3 Convergence of q(2) within static topology

For the switching topology case, we assume that the
communication topology switches periodically between
Figs. 1 (a) and 1 (b) with 5Hz. The simulation results are
shown in Figs. 6∼ 9. Note that compared with the static
topology case, the switching property was revealed within
the first 8 seconds, then the dynamic tracking was achieved.

5 Conclusion

We have investigated the problem of coordination control

Fig. 4 Convergence of q̇(1) within static topology

Fig. 5 Convergence of q̇(2) within static topology

Fig. 6 Convergence of q(1) within switching topology

Fig. 7 Convergence of q(2) within switching topology
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Fig. 8 Convergence of q̇(1) within switching topology

Fig. 9 Convergence of q̇(2) within switching topology

of EL systems with parametric uncertainty and possible
switching communication topology. Under the assumption
that parameters in system dynamics and external distur-
bances are unknown, we established a unified adaptive con-
trol architecture. Then, based on this architecture, coordi-
nation controllers were developed. It is proved by Lyapunov
theory and the switching version LaSalle-like theory that
these controllers can guarantee the coordination in both
static and switching topologies. Numerical simulation was
conducted to demonstrate the effectiveness of the proposed
controllers. Our future work will be the implementation of
experiment on our hardware-in-the-loop platform.
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