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There has been a tremendous research interest in multi-
agent systems in the control field since the last decade[1−3].
Multi-agent control systems are spatially distributed sys-
tems consisting of a number of interacting agents in which
sensing, communication, and control are carried out lo-
cally in a distributed fashion. These networked multi-agent
systems may have many advantages compared to single-
agent (centralized) systems, including improved flexibility
and reliability, and cost efficiency. These advantages are
due to the capability of self-organization or coordination,
namely, of a global ordered behavior of the networked sys-
tem that can emerge by implementing properly designed
local control protocols. These properties are intrinsically
robust against malfunctioning or perturbations in individ-
ual agents. The emergence of global effects[4−5] as a result
of microscopic local interactions could be seen as a general-
ization of the framework of statistical mechanics to ensem-
bles of man-made microscopic objects capable of sensing
and decision making.

As is well understood, the distributed nature of net-
worked systems and their need to adapt to varying con-
ditions, however, also pose great challenges to the mature
approaches and theories in the literature, in particular in
terms of emergence and scalability. Emergent behavior has
been studied for quite some time in computer science and
biology[4−5]. For networked mobile systems, it is clear that
emergent behavior is a very promising direction, given that
the capability of a single agent is quite limited so far. How-
ever, this leads also to the challenging issue of how to pre-
vent undesired emergent behaviors from undermining the
reliability of the system.

In distributed coordination of multi-agent systems, a
critical aspect is that information can mostly be collected
locally by the agents. When it comes to linear multi-agent
systems, the leaderless consensus problem is already well
understood. However, by adding leaders that has more
information or abilities the system can give rise to many
new applications[3, 5−7]. In most of the literature, some
connectivity of the associated graph is needed. However,
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how to guarantee the connectivity of the neighbor graphs
when the connectivity is distance induced, in particular
by exploiting the deployment of leaders, is an important
and still unsolved issue. Furthermore, when the size of the
group is large, how to use leaders to influence and modify
the statistical properties of the group as time evolves, re-
mains an open issue despite some recent study[8], in which
a leaderless multi-agent system without repulsive forces is
considered.

In this survey we consider the following type of multi-
agent systems (MAS):

ẋi = fi(x, ui)

yi = hi(xi)

where xi ∈ Rn, i = 1, · · · , N , is the state of agent i, ui the
control, yi the output, and x the stacked vector of vectors
xi.

One can also consider the discrete time case:

xi(t + 1) = fi(x, ui)

yi = hi(xi)

In this paper we will focus on three areas of the research
on multi-agent systems, namely on estimation and filtering,
intervention by external means, and interactive control.

Sensor networks are multi-agent systems that consist of
a large number of inexpensive wireless devices densely dis-
tributed over the region of interest. Sensor network tech-
nology can be potentially applied in many areas includ-
ing manufacturing, agriculture, construction, transporta-
tion and so on. Target tracking problem is a very impor-
tant research topic in multi-sensor monitoring and has at-
tracted the attention of many researchers in robotic sys-
tems and control theory till today. Target tracking algo-
rithms usually focus on the cooperative information pro-
cessing through the sensors′ interaction with a target after
the target has already been detected within the area that
the sensors cover. There are two critical issues, the de-
signs of deployment strategies and tracking filters, in tar-
get tracking for sensor networks. Many results have been
obtained to solve these two problems. Though, sometimes,
sensor deployment and filter design, seem independent in
purposes and methods, in fact, they can be integrated to-
gether to improve the information processing quality during
target tracking for sensors with limited communication and
computation resources[9−10].

Intervention of multi-agent systems by external means
such as leaders is a relatively new topic, and the current
study mainly focuses on the conceptual framework, exper-
iments and computer simulations. On the other hand, in
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many biological systems, such as fish schooling and hon-
eybee groups, at least some agents (leaders) have perti-
nent information about where to go, who can in turn help
guide the whole group. This phenomenon has inspired re-
searchers to investigate the intervention of multi-agent sys-
tems by adding special agents[5−7]. Another motivation
came from the desire to understand and intervene crowd
behavior during an emergency, which has become increas-
ingly important in the study of multi-agent social systems.
Various pedestrian models such as social force model[11−12]

have been proposed to gain insight into the crowd dynam-
ics, in particular when in panic[11].

How we in general control multi-agent systems based
on local information only such that the overall system ex-
hibits the desired collective behavior is a fundamental and
challenging problem. Design of such control for multi-
agent systems has been focusing on distributed control,
that is, design of local rules for agents such that the sys-
tem self-organizes to the desired behavior through interac-
tion. Multi-agent systems with mutual interaction between
agents′ state and networks′ topology are called multi-agent
systems with state-topology coevolution. In the field of
complex network, such kinds of systems are also known as
coevolutionary or adaptive network.

The paper is organized as follows: Section 1 presents
some recent results on distributed estimation design for
consensus control of multi-agent systems and target track-
ing in sensor networks. Two intervention methods of multi-
agent systems are reviewed in Section 2. Some interesting
results on the coevolution control of multi-agent systems or
complex networks are provided in Section 3.

1 Distributed estimation for networked
systems

With the rapid development of communication, compu-
tation and network theory and technology, control design
for a networked system has become a relatively challeng-
ing and also inspiring research direction in modern control
theory. Distributed computation and decentralized feed-
back are two distinct characteristics of networked systems
control. Thus, control of networked systems generally de-
pends on local information within the neighborhood, even
to achieve just a group coordination. Distributed esti-
mation for networked systems becomes greatly interesting
when only partial measurements, noisy measurements or
unknown disturbances exist in the networked systems.

1.1 Distributed estimation based consensus con-
trol of multi-agent systems

Multi-agent system is an important kind of networked
systems, where agents are interconnected over an undi-
rected or directed network topology and coordinated
through a decentralized feedback control law. The infor-
mation flow between each pair of linked agents may be
subject to uncertainty and noise. The consensus control
of multi-agent systems has to be designed with only par-
tial, disturbed or noisy measurements. There are two main
approaches to deal with the distributed estimation based
consensus control. One is distributed estimation via ob-
servers design for multi-agent coordination, and the other
is distributed output regulation based consensus control.

Till now, there have been some important results on dis-
tributed observer based consensus control of multi-agent
systems[1, 13−15]. In [1], the agent dynamics is described by
an identical linear system (1) and each agent receives two
measurements: the internal state measurements yi and the

external state measurements zij relative to other agents.





ẋi = Axi + Bui

yi = C1xi

zij = C2(xi − xj), j ∈ Ni

(1)

where xi is the state of agent i and Ni is the index set of
the neighbors of agent i. Since both the measurements may
contain only partial information of the states of the agent
and its neighbors, a dynamical output feedback control

{
v̇i = K1vi + K2yi + K3zi

ui = G1vi + G2yi + G3zi
(2)

where zi = 1
|Ni|

∑
j∈Ni

zij , has been designed for multi-

agent systems with some special interconnection topologies.
In [13−14], as a special case of the system (1), when a
self-active leader is involved in the multi-agent consensus
problem, 




ṗ0 = q0

q̇0 = u0

y0 = p0

(3)

a consensus tracking control ui has to be designed for fol-
lower agents, whose dynamics is described by a second-
order differential equation

{
ṗi = qi + δ1

i

q̇i = ui + δ2
i

(4)

where pi, qi are the state variables of agent i, δ1
i and δ2

i

are the disturbances. Under the assumptions that only
the position of the leader can be measured and there exist
disturbances in the follower dynamics, a decentralized ob-
server (5) was firstly proposed to estimate the velocity of
the leader,

˙̂qi = u0 − l

k

[ ∑
j∈Ni

(pi − pj) + bi(pi − p0)

]
(5)

and a tracking control

ui = u0 − k(qi − q̂i)− l

[ ∑
j∈Ni

(pi − pj) + bi(pi − p0)

]
(6)

was then designed with the relative position measurements
and the velocity estimations. In [15], a class of second-order
consensus problem was considered, where all agents are re-
quired to reach consensus on both the position and the ve-
locity. Two auxiliary systems were assigned to each agent
with only position measurements, which was implemented
to generate intermediary reference trajectories. When mul-
tiple dynamic leaders exist in a multi-agent system, a con-
tainment problem was considered in [16], where the follower
agents are required move into the convex hull spanned by
the dynamic leaders under the constraints that the veloci-
ties and the accelerations of both the leaders and the fol-
lowers are not available. A finite-time containment control
has been built by using a dynamic feedback strategy. In
[17], an observer based consensus tracking control has been
given for a leader-follower system with noisy measurements
via a novel velocity decomposition technique. In [18], a dy-
namic feedback consensus control has been proposed for a
group of autonomous agents with unicycle dynamics and a
virtual leader.
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For multi-agent systems with an exogenous disturbance
system, distributed output regulation based consensus con-
trol have been studied in recent years. In [19], the synchro-
nized output regulation problem of linear networked sys-
tems has been considered under the scenario where only
leaders have the information of the state of the exogenous
system. A distributed synchronous protocol has been given
for the follower agents to regulate its output by the esti-
mation of the state of exogenous system. An extension has
been made to the solvability of the regulator equation in
[20] by proposing a new assumption on the state matrix of
the exogenous system. References [21] and [22] dealt with
the leaderless consensus/synchronization problem and real-
ized that all the outputs or states are equal. The objective
does not care and cannot dictate the asymptotic behavior
of the output/state of each agent. Reference [21] makes use
of the internal model design while [22] employs the feedfor-
ward approach. In [23], the parameter uncertainties are al-
lowed in the system matrices associated with the agent dy-
namics. Then distributed output regulation was proposed
via state and output feedback using an internal model prin-
ciple. Reference [24] further relaxed the no-cycle constraint
on the interaction network and simplified the control design
and the stability analysis.

1.2 Cooperative filtering for sensor networks

As another important kind of networked systems, sen-
sor networks have broad applications in surveillance and
monitoring of an environment, collaborative processing of
information, and gathering scientific data from spatially
distributed sources for environmental modeling and pro-
tection. A fundamental problem in sensor networks is to
solve detection and estimation problems, for example, tar-
get localization and tracking.

Most of the past research on target tracking has been fo-
cused on the use of centralized algorithms that run on static
sensor networks[25]. Centralized Kalman filtering plays a
crucial role in such target tracking algorithms. In [26], the
sensing model of the sensor i was

yi(t) = r(t) + ωi(t) (7)

where r(t) is the target signal and ωi(t) is a zero-mean
white Gaussian noise. Then, a consensus filter

ṙi =
∑

j∈Ni

(rj − ri) +
∑

j∈Mi

(yj − ri) (8)

where Ni is the index set of the neighbors of sensor i and
Mi = Ni ∪ {i}, was introduced as a tool for distributed
sensor fusion in sensor networks. The consensus filter is a
dynamic version of average-consensus algorithm that has
been extensively used for sensor fusion. In [9], a solution
was proposed to the problem of collision-free tracking of a
mobile target via mobile sensor networks using a combina-
tion of the flocking and Kalman-consensus filtering algo-
rithms.

However, when a target is tracked by using a group of
static or mobile nonlinear sensors such as range and direc-
tion sensors, Kalman filter or Kalman-consensus filter will
not be valid any longer. For example, when the target is
moving with a nonlinear dynamics

ṙ(t) = f(r, t) + g(t)ξ(t) (9)

and the measurement of sensor i is given by

yi(t) = hi(r) + θ(t)ωi(t) (10)

where ξ(t), ωi(t) are unrelated zero-mean white Gaussian
noise. In order to make an estimation of r(t) for the sensor
network, some popular nonlinear filtering approaches have
been widely used in the case of Gaussian models, such as
the extended Kalman filter (EKF)[27], unscented Kalman

filter (UKF)[28], and in the case of non-Gaussian models,

such as particle filter[29]. For the nonlinear systems (9) and
(10), an EKF filter is given by

˙̂r(t) = f(r̂, t) + K(t)
[
y(t)− h(r̂)

]
(11)

where the Kalman gain matrix K(t) = P (t)CT(t)R−1(t),
the error covariance matrix P (t) satisfies

Ṗ (t) = A(t)P (t) + P (t)AT(t) + Q(t)−
P (t)CT(t)R−1(t)C(t)P (t)

and A(t), C(t) are the Jacobian matrices of f(r, t), h(r),
respectively. Though it seems difficult to show the con-
vergence of EKF since the uniform complete controllability
cannot be assumed generally[27, 30], EKF is still a practical
nonlinear filter in engineering applications. Recently, the
works[10, 31] considered a nonlinear target tracking problem,
where the target is moving with





ẋ = Ax + Bu

ζ̇ = Γζ + ν(t)

u = Dζ

(12)

and the measurement function of sensor i is

yi(t) = hi(p, si) + ωi(t) (13)

Here, si(t) denotes the position of sensor i. An observer-
based filter (14) was proposed for static or mobile sensors.

{
˙̂x = Ax + BDζ̂ + K1(y − h(x̂, s))
˙̂
ζ = Γζ̂ + K2(y − h(x̂, s))

(14)

The nonlinear observers were constructed for sensor infor-
mation fusion to track a moving target and the convergence
of the filter was analyzed as well. However, the nonlinear
filtering algorithm proposed in [10] suffers from one weak-
ness: all sensors are awake and active during the whole
target tracking process, which may violate limited energy
constraints in practice, even could result in information re-
dundancy. In [31], a formation control based sensor deploy-
ment strategy was proposed to guarantee the feasibility of
the nonlinear observer-based target tracking filter.

2 Intervention of multi-agent systems

As we know, the research on multi-agent systems can be
classified into three categories:

1) Analysis: Given the local rule of the agents, what is
the collective behavior of the system?

2) Distributed control: Given the desired collective be-
havior, how do we design the rules of the agents such that
the system exhibit the desired behavior?

3) Intervention: Given the desired behavior, how do we
control or intervene in the system without destroying the
local rule of the system?

Intervention of MAS is a very important issue, since in
many practical situations, it is not allowed to change the
local rule of the agents, for example, the flying birds, the
people in panic, but we need to control the behavior of the
whole system, such as, guiding the bird flocks, leading the
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people in panic to escape from the fire. Then what can we
do to intervene in the system such that the desired behavior
emerges from the system?

We note that intervention is different from distributed
control[6] and pinning control[32]. In distributed control,
each agent can be regarded as a control system, and the
control law of each agent can be designed based on local
information. In pinning control, we need to design the local
feedback control law of some (not all) agents selected with
some special properties. In fact, the pinning control can be
regarded as a special case of distributed control. However,
for intervention of MAS, one of the key points is that the
local interaction between agents cannot be changed.

In this section, we will introduce two kinds of inter-
vention methods: soft control and adding “information”
agents.

2.1 Soft control of multi-agent systems

Soft control, put forward by Han et al.[7], is a novel
method to intervene in the collective behavior of MAS. The
central idea of soft control is to add one (or some) special
agent(s) (called shill) into the original systems to guide the
system to the desired behavior, but without changing the
local rules of the existing agents. The special agent(s) can
be controlled or designed by us, and cannot be identified
by the existing agents. The existing agents take them as
ordinary agents, so the shill agent(s) will not destroy the
local rules of the ordinary agents, but can affect the be-
havior of other agents in its neighborhood. The property
of local interactions between agents makes the influence of
the shill spread out, so adding shill agent(s) may control
the behavior of the whole system. In the following part, we
will introduce a case study[7] to show that it is feasible to
intervene in the MAS.

First, we will introduce the multi-agent model to be con-
trolled, which is proposed by Vicsek et al.[33]. This model
can be used to investigate the properties of nonequilibrium
systems, such as gathering, transport and phase transition,
and also has potential applications in biological systems
involving clustering and migration.

The Vicsek model is a discrete-time MAS model com-
posed of n autonomous agents, labeled 1, 2, · · · , n. Each
member moves in the plane with a constant speed v, but
with heading updated according to the averaged velocity
of neighbors plus the noise effect. Here the neighbors are
defined via a circle of radius r, we use Ni(t) to denote the
neighbor set of agent i (i = 1, 2, · · · , n) at discrete time t
(t = 0, 1, 2, · · · ), that is

Ni(t) = {j|dij(t) < r, j = 1, 2, · · · , n} (15)

where dij(t) = ‖Xi(t)−Xj(t)‖ with ‖·‖ being the Euclidean
norm, and Xi(t) ∈ R2 is the position of the agent i at time
t. Each agent moves with a constant speed, so the position
is updated according to the following equation:

Xi(t + 1) = Xi(t) + v(cos θi(t), sin θi(t))
T,

i = 1, 2, · · · , n, t = 0, 1, 2, · · ·
(16)

where θi(t) is the heading of the agent i at time t, which is
updated according to the following equation:

θi(t + 1) = arctan

∑
j∈Ni(t)

sin θj(t)

∑
j∈Ni(t)

cos θj(t)
+ ξi(t), i = 1, 2, · · · , n

(17)

with ξi(t) being the noise. Vicsek et al.[33] show that when
the density is large and the noise is small, the system can
reach consensus, that is, all agents move with the same
heading eventually. This model looks simple, but possesses
some key features of MAS, such as local interactions, dy-
namical neighborhood. Thus, it attracts much attention
of researchers in recent years, and many results focus on
seeking the consensus conditions, see [34−37] from many
others. However, the behavior resulting from self organiza-
tion may not be what we want. In the following, we will
show that soft control is a feasible way to intervene in the
system, such that the system exhibits the expected behav-
ior.

In [7], the authors considered the case where one special
agent (called shill) is added to intervene in the MAS (15)∼
(17) without noise effect such that all agents move with
the same expected heading π. The position and heading
of the shill, denoted as X0(t) and θ0(t), can be controlled.
The control law is designed based on the information of all
agents:





X0(t) = xS(t)(t)

θ0(t) =

{
θS(t) + β, θS(t)(t) ≤ π − β
π, θS(t)(t) > π − β

(18)

where β ∈ (0, π) is a constant, and S(t) =
arg min1≤i≤n{θi(t)} denotes the “worst” agent in terms of
the heading error.

According to the above control law of the shill agent, the
following result was obtained in [7]:

Theorem 1. For the MAS (15)∼ (17) without noise
effect, for any r ≥ 0, v ≥ 0 and any initial configuration
{Xi(0) ∈ R2, θi(0) ∈ [0, π), i = 1, 2, · · · , n}, the shill agent
which obeys the control law (18) can guide all agents to the
expected heading π.

Remark 1. In control law (18), the moving direction
and the heading of the shill is inconsistent. In [38], Han and
Wang provide a new strategy to overcome it. Moreover, in
[39], the authors considered the soft control of the MAS
(15)∼ (17) with noise.

Remark 2. The idea of soft control can also be used
to intervene in other MAS, for example, in [40], the shill
agents added can promote the rate of cooperation in re-
peated multi-player prisoner′s dilemma game.

2.2 Leader-follower model

It is known that in many biological systems, such as fish
schooling and honeybee groups, most agents make navi-
gation decision according to social interaction. However,
there are a small number of agents with pertinent informa-
tion about the destination. For example, they know the
location of food, these agents can help to guide the group.
The “information” agents are called leaders, and the other
ordinary agents without information are called followers.
Although the leaders are not assumed to be able to change
the local rules of the followers, the local interaction between
agents does make the information spread within the group.

Inspired by this, some researchers focus on the interven-
tion of MAS by adding leaders. For example, Couzin et
al.[5] investigated how the proportion of leaders affects the
behavior in decision-making. They built a MAS model,
where each agent obeys the three local interaction rules:
repulsion, alignment and attraction. By computer simula-
tions, the authors show that the larger the population size,
the smaller the proportion of leaders is needed to guide the
group. Also they studied how the system behaves when
there are two kinds of leaders with different information.
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In [41], by experiments on vast oceanic fish shoals, the au-
thors pointed out that small sets of leaders significantly
influence the actions of much larger groups.

To explain the effectiveness of the leaders, some theoret-
ical results arise. For example, Jadbabaie et al.[3] studied
the MAS with only one leader, they show that if the neigh-
bor graph formed by leader and all followers are connected
in some sense, then the leader can guide all agents to move
with the same expected headings. However, how we guar-
antee the connectivity of the neighbor graph is an unre-
solved issue. In [42], the authors present a necessary and
sufficient condition for the stable convergence to a collective
decision of a continuous-time model, where each agent′s
heading is updated according to the well-known Kuramoto
model for populations of coupled oscillators. Actually, the
leader-follower model is widely studied in cooperative con-
trol of engineering MAS, see [3, 13, 43−44] among many
others.

It is worth mentioning that Liu et al.[44] provide quan-
titative results for the proportion of leaders needed for the
expected consensus. In [45], a simpler model is used, where
the follower agents update their position and heading ac-
cording to (16) and (17), while the leaders update their
position and heading according to

Xi(t + 1) = Xi(t) + v(cos θ̄0, sin θ̄0)
T

where θ̄0 is the expected heading. Here for simplicity, at
each time step, the leaders take θ̄0 as their moving direc-
tion.

To analyze it, the authors introduce the following ran-
dom framework.

Assumption 1. 1) The initial positions of all agents
are uniformly and independently distributed in the unit
square; 2) The initial headings of the ordinary agents are
uniformly and independently distributed in [−π, π), and
the initial positions of all agents and the initial headings of
the ordinary agents are independent.

The main result can be stated as follows:
Theorem 2. Let the radius be a positive constant, and

the speed satisfy the condition v ≤ π(min{1,r})2
512·8r

. Under
Assumption 1, if the proportion of leaders αn satisfies the
following condition:

αn ≥ C
4

√
log n

n

where C is positive constant independent of n, then the
leaders can guide the system to the expected heading θ̄0

eventually when the population size n is large enough.
Many problems deserve to be further investigated, for ex-

ample, what is the necessary condition for the proportion
of leaders? If there are two classes of leaders with differ-
ent information, what will the results be? For the model
proposed in [5], how do we analyze it?

3 Multi-agent systems with nonlinear
interaction

Multi-agent systems consist of a number of interacting
agents, where the specific pattern of interaction is repre-
sented by a network. The interaction among agents can
be governed by linear local rules, which is so-called linear
multi-agent systems. At present, there is a large amount of
literatures considering linear multi-agent systems from first
order to second order as well as higher order systems. Refer
to [46−49] and the references therein, to name a few. But

in reality, the interaction among agents may be nonlinear.
Typical examples are the dynamics of complex network.
On the other hand, the mutual interaction between agents′

state and networks′ topology can also lead to the nonlin-
earity. In this section, we will review the research progress
on multi-agent systems with nonlinear interaction from two
aspects: general nonlinear multi-agent systems and those
with state-topology co-evolution.

3.1 General nonlinear multi-agent systems

In real systems, nonlinear intrinsic dynamics or nonlin-
ear interaction among agents are inevitable. Examples are
systems of coupled oscillators. On nonlinear multi-agent
systems, a pioneering work is [50], in which Moreau con-
sidered a general nonlinear discrete system

xi(t + 1) = fi(t, x1(t), · · · , xn(t)), i = 1, 2, · · · , n (19)

where xi ∈ X, X is a Euclidean space of arbitrary finite
dimension and the map fi : N × Xn → X is continuous.
This general model can include many special systems such
as synchronization of coupled oscillators[51], swarming of
Vicsek model[33], consensus of linear and nonlinear multi-
agent systems, and so on.

To reach certain consensus defined in [50], each fi is as-
sumed to satisfy a strict convexity condition, which means
that for each agent i, the updated state xi(t + 1) is a strict
convex combination of the current states of agent i and its
neighbors, that is,

xi(t + 1) = conv{xi(t), xj(t), j ∈ Ni(t)}
hold for any i = 1, 2, · · · , n and t ≥ 0. Under this convexity
assumption, several necessary and/or sufficient conditions
on the communication topology guaranteeing the conver-
gence of the individual agents′ states to a common value
were presented using graph theory and the set-value Lya-
punov method.

Then, Lin et al. generalized the work of Moreau to non-
linear continuous multi-agent systems. Using nonsmooth
analysis, they proved that if the vector fields satisfy a
certain subtangentiality condition, asymptotic state agree-
ment is achieved if and only if the dynamic interaction di-
graph being sufficiently connected over time[52].

As we know, the key condition in [50] is the convexity
of the nonlinear functions fi. This condition was improved
by Angeli and Bliman in [53] as follows: each agent moves
towards the relative interior of a set of the present and past
states of neighbor agents, which is not necessarily a convex
hull. Arbitrary bounded time delays in the communication
channels were also considered.

Recently, [54] further investigated consensus of a
discrete-time MAS with nonlinear transmission and time-
varying delays, which relaxed the commonly assumed con-
vexity condition and hence generalized several well known
results. The evolution of agent i complies with

xi(t + 1) =

n∑
j=1

aij(t)fij(xj(t− τ i
j (t))), i = 1, 2, · · · , n

(20)

where xi ∈ Rm, aij(t) are the weights in the graph G(t)
at time t. Here, the term fij(xj(t − τ i

j (t))) represents the
nonlinearity and time delays in the transmission of infor-
mation from agent j to agent i. Instead of the convexity
condition in [50], this paper assumes that all fij ∈ F and
share two common sets B and U , where the set F is defined
as follows.
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A function f belongs to F if the following conditions are
satisfied:

1) f : Rm → Rm is continuous.
2) There exists a nonempty compact convex set B ⊂ Rm

and a nonempty bounded convex set U ⊂ B such that: a)
f(x) ∈ B for all x ∈ B; b) f(x) = x for all x ∈ U , and
d(f(x),U) < d(x,U) for all x ∈ B such that f(x) 6= x.

For example, let f(x) = x3 with B = [−1, 1] and U =
{0}. Then, it is obvious that f ∈ F .

Under the assumption about fij above and the bounded
communication delays, the consensus results of system
(20) were given when the topology graph G(∞) =
limk→∞ ∪t≥kG(t) is connected and {G(t)}t≥0 is jointly con-
nected, respectively.

Some other stabilization problems on nonlinear multi-
agent systems can be referred to [55−58] and the references
therein.

3.2 Multi-agent systems with state-topology co-
evolution

Multi-agent systems with mutual interaction between
agents′ state and networks′ topology are called multi-agent
systems with state-topology coevolution. In the field of
complex network, such kinds of systems are also known
as coevolutionary or adaptive network. A number of pa-
pers have recently appeared on the modeling of coevo-
lutinary networks, such as coevolution of behavior and
structure in Web[59], influence of behavior on the spread
of diseases[60], co-emergence of cooperation and hierarchi-
cal structure in games[61], evolution of opinion formation
on adaptive network[62], see [63−64] and http://adaptive-
networks.wikidot.com/publications for more references. In
this paper, we will focus on the theoretical study on the
multi-agent systems with state-topology coevolution.

A classical flocking model with state-topology coevolu-
tion is the so-called Vicsek model[65], as introduced in Sub-
section 2.1. The communication networks are determined
by the positions of the agents, thus are state-dependent
and dynamic. A large number of theoretical results have
shown that the connectivity of the dynamic networks is
crucial for the consensus[3, 66−67]. For the Vicsek model,
once given the initial conditions and the system parame-
ters, the dynamical process of the network topology will be
driven by the evolution of the agents′ states. Therefore,
what kinds of initial conditions and system parameters can
lead to consensus turns out to be a difficult and challenging
issue. Toward this issue, Liu and Guo presented a prelim-
inary theoretical analysis, and developed a sufficient con-
dition for the synchronization that the speed v should be

sufficiently slow with v ≤ d
40

( cos θ̄
n

)n, where n is the size

of population and d, 40, θ̄ are determined by the initial
states[35]. This result implies that the speed v should de-
crease exponentially as the population increases, which is
restrictive for large population. In [68], the condition on
the speed v is improved from O(n−n) to O(n−β), where
β is a constant independent of n. Tang and Guo made a
major advance by putting the model in a random frame-
work, and under uniformly distributed initial conditions,
they proved that for any given speed v and communication
radius r the linearized Vicsek model will synchronize with
large probability as long as the size of the population is
large enough[69]. Liu and Guo obtained a similar condition
for synchronization of the original Vicsek model in [36].
Furthermore, in [37], Chen et al. investigated the smallest
possible radius for synchronization of the linearized Vic-

sek model, and proved that, in a certain sense, it approxi-
mately equals the critical radius for connectivity of random
geometric graphs, i.e. logn/(πn).

The interaction in the Vicsek model is defined based on
the metric distance between agents, that each agent inter-
acts with all agents within a fixed metric distance. By
means of empirical observations and simulations, Ballerini
et al. have shown that this kind of metric interaction is
less efficient to maintain cohesion comparing with topolog-
ical interaction[70]. Here, topological interaction is qual-
ified by how many intermediate individuals separate two
agents, not how far apart they are. In the topological case,
the strength of the interaction could remain the same at
different densities. Since the topology interaction is not
symmetrical, the neighbor graph is direct. Wang et al.
presented a preliminary theoretical study for the synchro-
nization of such topological interaction, and developed a
sufficient condition which showed the relationship between
the speed, the heading and the density of the group[71]. In
a random framework, Chen et al. proved that if the number
of the topological neighbors is proportional to the popula-
tion size, then for any speed, the system can synchronize
with large probability[72].

There are also some other kinds of interaction modes.
In [34], Cucker and Smale made use of global interactions
with weights decaying according to the distances among
agents. They proved that when the decay rate is less
than 1/2, convergence of the flock to a common velocity is
guaranteed, while some conditions on the initial positions
and velocities should be added for the case that the decay
rate is larger than 1/2. A number of local potential func-
tions are developed to generate attractive interactions to
guarantee connectivity, such as the Laplacian matrix based
function[73], the edge-tension functions[74−78], and the nav-
igation functions[79−82]. Most of the potential functions in
the above mentioned results are unbounded, except those
in [79−80] for single-integrator agents, and those in [78, 81]
for double-integrator agents, and that in [82] for unicycles.

4 Conclusions

In this paper, we have reviewed some new research and
development in multi-agent systems from the viewpoint of
control theory. Both theoretical results and experiments
are reviewed for the following main issues: distributed esti-
mation and cooperative filtering, soft control and informed
agent intervention, and nonlinear interaction dynamics, in
multi-agent systems. There are some other interesting yet
challenging problems not covered in this paper, such as con-
strained communication, optimal consensus control, com-
petition and cooperation, and so on.
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