# 具有模糊聚类功能的双向二维无监督特征提取方法

皋军<sup>1,2,3</sup> 孙长银<sup>1</sup> 王士同<sup>4</sup>

摘 要 依据最大间距判别准则 (Maximum margin criterion, MMC) 的基本原理,并结合模糊技术和张量理论,提出一种矩 阵模式的模糊最大间距判别准则 (Matrix model fuzzy maximum margin criterion, MFMMC),并在此基础上形成具有模糊 聚类功能的双向二维无监督特征提取方法 (Two-directional two-dimensional unsupervised feature extraction method with fuzzy clustering ability,  $(2D)^2$ UFFCA). 该方法不但能直接实现矩阵模式数据的模糊聚类,而且还可以对矩阵模式数据进行 双向二维特征提取,实现特征降维. 同时我们还从几何的直观含义出发,合理地设定矩阵模式的模糊最大间距判别准则中的调 节参数  $\gamma$ ,并从理论上证明其合理性.为了提高特征提取的效率,还提出一种能有效计算矩阵模式数据的投影变换矩阵的方法. 实验结果表明该方法具有上述优势.

关键词 张量模式,双向二维特征提取,矩阵模式的模糊最大间距判别准则,模糊聚类

**引用格式** 皋军,孙长银,王士同.具有模糊聚类功能的双向二维无监督特征提取方法.自动化学报,2012,**38**(4):549-562 **DOI** 10.3724/SP.J.1004.2012.00549

# (2D)<sup>2</sup>UFFCA: Two-directional Two-dimensional Unsupervised Feature Extraction Method with Fuzzy Clustering Ability

GAO Jun<sup>1, 2, 3</sup> SUN Chang-Yin<sup>1</sup> WANG Shi-Tong<sup>4</sup>

Abstract In this paper, based on the principles of the maximum margin criterion (MMC) and by introducing the fuzzy method and the tensor theory into it, a novel matrix model fuzzy maximum margin criterion (MFMMC) is proposed. Also, on the basis of it, a two-directional two-dimensional unsupervised feature extraction method with fuzzy clustering ability  $((2D)^2 UFFCA)$  is constructed. This method can directly realize fuzzy clustering of matrix model data. And it can also achieve the two-directional two-dimensional feature extraction of them, that is, the realization of dimension reduction. At the same time, the adjusting parameter  $\gamma$  in the matrix model fuzzy maximum margin criterion is defined reasonably from the respect of geometry intuition, which is proved theoretically. In order to improve the efficiency of feature extraction, an effective method which can find out the projection matrices of matrix model data is presented. The results of tests show the above advantages of the method.

**Key words** Tensor model, two-directional two-dimensional feature extraction, matrix model fuzzy maximum margin criterion (MFMMC), fuzzy clustering

Citation Gao Jun, Sun Chang-Yin, Wang Shi-Tong.  $(2D)^2$ UFFCA: two-directional two-dimensional unsupervised feature. Acta Automatica Sinica, 2012, **38**(4): 549–562

收稿日期 2011-04-25 录用日期 2011-09-14

本文责任编委 刘成林

特征提取 (Feature extraction) 作为一种有效的特征降维方法在模式识别、图像处理和计算机视觉中得到了成功的运用<sup>[1-4]</sup>.特征提取的目的是通过相应的特征变换映射将高维的原始样本空间转换为低维的表示空间<sup>[5]</sup>,而低维的表示空间所保留的判别信息的多少往往用来作为评判特征提取方法效率的标准.主成分分析 (Principal component analysis, PCA)<sup>[6-7]</sup>和线性判别分析 (Linear discrimination analysis, LDA)<sup>[8-9]</sup>作为两种较为经典的特征提取方法被广泛地研究.PCA 是一种无监督的特征提取方法,该方法主要通过所构造的协方差矩阵选取能保持样本全局信息的主元 (即一组相互正交的基底),并通过这些主元实现原始样本空间

Manuscript received April 25, 2011; accepted September 14, 2011

国家自然科学基金 (90820002, 60903100, 61005008), 江苏省自 然科学基金 (BK2011417), 江苏省新型环保重点实验室开放课题 (AE201068), 江苏省计算机信息处理重点实验室开放课题 (KJS1126) 资助

Supported by National Natural Science Foundation of China (90820002, 60903100, 61005008), Natural Science Foundation of Jiangsu Province (BK2011417), Open Project of Key Laboratory for Advanced Technology in Environmental Project of Jiangsu Province (AE201068), Open Project of Key Laboratory for Computer Information Processing Technology of Jiangsu Province (KJS1126)

Recommended by Associate Editor LIU Cheng-Lin

东南大学自动化学院南京 210096
 盐城工学院信息工程学院 盐城 224001
 苏州大学江苏省计算机信息处理重点实验室 苏州 215006
 江南大学数字媒体学院 无锡 214122

<sup>1.</sup> School of Automation, Southeast University, Nanjing 210096 2. School of Information Engineering, Yancheng Institute of Technology, Yancheng 224001 3. Key Laboratory for Com-

puter Information Processing Technology, Soochow University, Suzhou 215006 4. School of Digital Media, Jiangnan University, Wuxi 214122

的低维投影. LDA 方法则在充分使用训练样本类 标号的前提下,依据最小化类内散度、最大化类间 散度的原则得到高维原始空间的低维嵌入,实现有 监督的特征提取,从而使 LDA 方法比 PCA 方法 更有利于模型化不同类别样本所具有的潜在结构和 特征. 然而 LDA 方法在处理高维小样本问题数据 时类内散度矩阵容易发生奇异,即所谓的小样本问 题 (Small sample size problem, SSS). 为此研究者 从不同的角度提出了许多基于 LDA 的改进方法来 克服这一问题,比如 PCA + LDA<sup>[10]</sup>、Fisher 脸方 法<sup>[3-4]</sup>、DLA (Discriminant learning analysis)<sup>[11]</sup> 等. 特别是一些基于最大间距原则的方法: 最 大散度差判别分析 (Maximum scatter difference discriminant criterion, MSD)<sup>[12]</sup>、最大间距判别分 析 (Maximum margin criterion, MMC)<sup>[13-14]</sup> 等, 该类方法通过将 LDA 方法的最大化类间散度与 类内散度的比值形式转变成最大化类间散度与 类内散度的差的形式,从而较为容易地解决了 LDA 方法面临的小样本问题, 而且与其他方法相 比具有相对较低的时间复杂度和更明确的直观含 χ<sup>[15]</sup>.

目前,智能识别领域越来越多的数据呈现张 量模式[16-19],如果还使用传统的子空间学习方 法处理这些具有高维特征的张量模式数据,即将 高维的张量模式数据转化为矢量模式加以处理, 在一定程度上会导致所谓的维数灾难 (Curse of dimensionality)<sup>[20]</sup>,同时会破坏原始数据内在的 空间结构和相关性,因此近来基于张量模式数据 的子空间学习方法得到广泛研究,特别是基于矩 阵模式的张量子空间学习方法被研究得更为深 入和详尽. 这是因为基于矩阵模式数据的张量 子空间学习方法的数学理论完备、模型简单,而 且所得结果可以平滑地推广到高序张量 (Highorder tensors) 模式数据上. 如具有单向特征提 取功能的二维主成分分析 (Two-dimensional PCA, 2DPCA)<sup>[21]</sup>、二维线性判别分析 (Two-dimensional LDA, 2DLDA)<sup>[22-24]</sup> 和二维最大散度差判别准则 (Two-dimensional MSD, 2DMSD)<sup>[25]</sup>, 以及具有 双向特征提取功能的双向二维主成分分析 (Twodirectional Two-dimensional PCA, (2D)<sup>2</sup>PCA)<sup>[26]</sup> 和双向二维线性判别分析 (Two-directional Twodimensional LDA, (2D)<sup>2</sup>LDA<sup>[27]</sup>)<sup>1</sup> 等方法都得到 了广泛研究.

值得一提的是,近来文献 [28-31] 分别从不 同角度将模糊理论引入特征提取方法中. 文献 [28-29] 分别基于 MMC 和 LDA 提出两种无监督 的特征提取方法: FMSDC 和 FLDC (LDA-based fuzzy clustering), 上述方法不但能实现模糊聚类, 还可以实现特征提取; 文献 [30-31] 将模糊理论 分别引入 LDA 和 2DLDA, 提出 CFLDA (Complete fuzzy LDA) 和 F2DLDA (Fuzzy 2DLDA), 提高了相应有监督特征提取方法的泛化能 力.

然而,研究发现,虽然 (2D)<sup>2</sup>PCA, (2D)<sup>2</sup>LDA 和 2DMSD + PCA 方法能取得较好的特征提取 效果,但并不能直接进行模式分类;而 FMSDC 和 FLDC 方法也只能处理相对低维的矢量模式 数据; CFLDA 和 F2DLDA 方法尽管通过引入 了模糊概念, 使得有监督特征提取结果更符合实 际,但由于在求解隶属度时都使用了先验方法, 导致上述方法也不能直接进行模式分类.因此, 本文在继承上述方法优点的基础上,结合 MMC 方法提出一种矩阵模式的模糊最大间距判别准 则 (Matrix model fuzzy maximum margin criterion, MFMMC), 并依据该准则形成具有模糊聚 类功能的双向二维的无监督特征提取方法 (Twodirectional two-dimensional unsupervised feature extraction method with fuzzy clustering ability, (2D)<sup>2</sup>UFFCA), 贡献如下: 1) 首次提出矩阵模式 的模糊最大散度差判别准则; 2) 不但可以实现矩 阵模式数据的直接聚类, 而且还可以实现双向二维 的无监督特征提取; 3) 根据几何的直观含义确定 MFMMC 方法中调节参数  $\gamma$ ,并从理论上证明其合 理性; 4) 为了提高该方法特征提取效率, 提出一种 能有效计算矩阵模式数据的正交投影变换矩阵的方 法.

本文内容组织如下: 第1节简要介绍 MMC 和 (2D)<sup>2</sup>LDA 的相关知识; 第2节详细讨论 (2D)<sup>2</sup>UFFCA 方法; 第3节进行实验研究; 第4 节总结全文并提出待解决的问题.

### 1 相关知识

为了便于讨论,本节简要介绍最大间距判别分 析方法 (MMC) 和双向二维的线性判别分析方法 ((2D)<sup>2</sup>LDA).

#### 1.1 最大间距判别分析方法: MMC

定义  $1^{[8]}$ . 假设有 n 个样本组成的样本集  $D = [x_1, x_2, \dots, x_n]$ ,它们分别属于 C 个不同的类,其 中大小为  $n_k$  的样本子集  $D_k$  属于第 k 类,给定分类 决策平面的法向量  $\omega$ ,则类内散度、类间散度分别为  $\omega^{T}S_W\omega, \omega^{T}S_B\omega$ .其中类内散度矩阵  $S_W$ 、第 k 类 均值  $u_k$ 、类间散度矩阵  $S_B$  和样本总体均值 u 分别

<sup>&</sup>lt;sup>1</sup>尽管该文献也将方法记为 2DLDA,但本质上该方法是双向二维的 特征提取方法,为了区别于其他单向二维特征提取方法,本文将该方法记 为 (2D)<sup>2</sup>LDA.

为

$$S_W = \sum_{k=1}^{C} \sum_{\boldsymbol{x} \in D_k} (\boldsymbol{x} - \boldsymbol{u}_k) (\boldsymbol{x} - \boldsymbol{u}_k)^{\mathrm{T}}$$
(1)

$$\boldsymbol{u}_{k} = \frac{1}{n_{k}} \sum_{\boldsymbol{x} \in D_{k}} \boldsymbol{x}, \ k = 1, 2, \cdots, C$$
(2)

$$S_B = \sum_{k=1}^{C} n_k (\boldsymbol{u} - \boldsymbol{u}_k) (\boldsymbol{u} - \boldsymbol{u}_k)^{\mathrm{T}}$$
(3)

$$\boldsymbol{u} = \frac{1}{n} \sum_{\boldsymbol{x} \in D} \boldsymbol{x} \tag{4}$$

**定义 2**<sup>[13]</sup>.根据定义 1,最大间距判别分析方法 目标函数为

 $\arg\max_{\boldsymbol{\omega}^{\mathrm{T}}\boldsymbol{\omega}=1} J(\boldsymbol{\omega}) = \arg\max_{\boldsymbol{\omega}^{\mathrm{T}}\boldsymbol{\omega}=1} \left(\boldsymbol{\omega}^{\mathrm{T}} S_{B} \boldsymbol{\omega} - \gamma \boldsymbol{\omega}^{\mathrm{T}} S_{W} \boldsymbol{\omega}\right)$ (5)

定义 2 表明 MMC 方法确实可以解决小样本问题,且明显满足式 (5)的最优鉴别矢量  $\omega^*$ 为  $S_B - \gamma S_W$ 最大特征值对应的单位特征向量.定义 2 还表明,调节参数  $\gamma$  对求解最优鉴别矢量  $\omega^*$ 有 至关重要的作用,文献 [12, 14]虽然对该参数做了一 定的理论分析,但并没有给出设定该参数的具体方法.

# 1.2 双向二维线性判别分析: (2D)<sup>2</sup>LDA

$$\boldsymbol{\alpha} = \sum_{k=1}^{C} \sum_{i=1}^{n_k} \|Y_i - \overline{Y}_k\|_F^2 = \sum_{k=1}^{C} \sum_{i=1}^{n_k} \operatorname{tr}((Y_i - \overline{Y}_k)(Y_i - \overline{Y}_k)^{\mathrm{T}}) = \sum_{k=1}^{C} \sum_{i=1}^{n_k} \operatorname{tr}(U^{\mathrm{T}}(X_i - \overline{X}_k)VV^{\mathrm{T}}(X_i - \overline{X}_k)^{\mathrm{T}}U)$$
(6)

$$\boldsymbol{\beta} = \sum_{k=1}^{C} \|\overline{Y}_{k} - \overline{Y}\|_{F}^{2} = \sum_{k=1}^{C} \operatorname{tr}((\overline{Y}_{k} - \overline{Y})(\overline{Y}_{k} - \overline{Y})^{\mathrm{T}}) = \sum_{k=1}^{C} \operatorname{tr}(U^{\mathrm{T}}(\overline{X}_{k} - \overline{X})VV^{\mathrm{T}}(\overline{X}_{k} - \overline{X})^{\mathrm{T}}U) \quad (7)$$

其中, tr(·) 是矩阵迹运算.

**定义 3**<sup>[27]</sup>.根据式 (6) 和式 (7) 定义的类内散 度 *α* 和类间散度 *β*, (2D)<sup>2</sup>LDA 判别分析方法目标 函数为

$$\arg \max_{U^{\mathrm{T}}U=I_{l_1}, V^{\mathrm{T}}V=I_{l_2}} J(U, V) = \arg \max_{U^{\mathrm{T}}U=I_{l_1}, V^{\mathrm{T}}V=I_{l_2}} \frac{\beta}{\alpha}$$
(8)

为了有效地求解式 (8) 中两个投影矩阵 U 和 V, 文献 [27] 使用了迭代方式优化方法.本文为了在 一定程度上提高算法效率,提出一种新的方法求解 类似问题.

# 2 具有模糊聚类功能的双向二维无监督特征 提取方法: (2D)<sup>2</sup>UFFCA

目前,大多数基于矩阵模式的特征提取方法仅 能实现样本的特征降维功能,而不能直接完成模式 的分类,因此设计一种既能实现矩阵模式数据的特 征提取又能解决该模式数据的直接分类问题的方法 具有一定的研究价值和现实意义.本文基于此提出 了 (2D)<sup>2</sup>UFFCA 方法.

# 2.1 矩阵模式的模糊最大间距判别准则: MFMMC

定义 4. 假设存在可以分为 *C* 类的矩阵模式数 据集  $\tilde{D} = \{X_1, \dots, X_n\} \subseteq \mathbf{R}^{m_1 \times m_2}, \forall \forall X_i$  同时存 在列方向和行方向上的两个投影矩阵  $U \in \mathbf{R}^{m_1 \times l_1}$ 和  $V \in \mathbf{R}^{m_2 \times l_2}$ ,使  $X_i$  映射为  $Y_i = U^T X_i V$ ,其 中  $l_i < m_1, l_2 < m_2$ ,由此可得数据集  $\tilde{D}$  的嵌入集  $\tilde{S} = \{Y_1, \dots, Y_n\}$ .则 MFMMC 方法的类内散度  $\boldsymbol{\alpha}^{\text{MFMMC}}$ 和类间散度  $\boldsymbol{\beta}^{\text{MFMMC}}$  可以分别表示为

$$\boldsymbol{\alpha}^{\text{MFMMC}} = \sum_{k=1}^{C} \sum_{i=1}^{n} \mu_{ik}^{m} \|Y_{i} - \overline{Y}_{k}\|_{F}^{2} = \sum_{k=1}^{C} \sum_{i=1}^{n} \mu_{ik}^{m} \operatorname{tr}((Y_{i} - \overline{Y}_{k})(Y_{i} - \overline{Y}_{k})^{\mathrm{T}}) =$$

$$\operatorname{tr}(U^{\mathrm{T}}(\sum_{k=1}^{C}\sum_{i=1}^{n}\mu_{ik}^{m}(X_{i}-\overline{X}_{k})VV^{\mathrm{T}}\times$$
$$(X_{i}-\overline{X}_{k})^{\mathrm{T}})U) =$$
$$\operatorname{tr}(V^{\mathrm{T}}(\sum_{k=1}^{C}\sum_{i=1}^{n}\mu_{ik}^{m}(X_{i}-\overline{X}_{k})^{\mathrm{T}}UU^{\mathrm{T}}\times$$
$$(X_{i}-\overline{X}_{k}))V)$$
(9)

$$\boldsymbol{\beta}^{\text{MFMMC}} = \sum_{k=1}^{C} \sum_{i=1}^{n} \mu_{ik}^{m} \| \overline{Y}_{k} - \overline{Y} \|_{F}^{2} = \sum_{k=1}^{C} \sum_{i=1}^{n} \mu_{ik}^{m} \operatorname{tr}((\overline{Y}_{k} - \overline{Y})(\overline{Y}_{k} - \overline{Y})^{\mathrm{T}}) = \operatorname{tr}(U^{\mathrm{T}}(\sum_{k=1}^{C} \sum_{i=1}^{n} \mu_{ik}^{m}(\overline{X}_{k} - \overline{X})VV^{\mathrm{T}} \times (\overline{X}_{k} - \overline{X})^{\mathrm{T}})U) = \operatorname{tr}(V^{\mathrm{T}}(\sum_{k=1}^{C} \sum_{i=1}^{n} \mu_{ik}^{m}(\overline{X}_{k} - \overline{X})^{\mathrm{T}}UU^{\mathrm{T}} \times (\overline{X}_{k} - \overline{X}))V)$$
(10)

其中,  $\mu_{ik}$  是模糊隶属度, 表示第 *i* 个样本隶属于第 *k* 类可能性大小, 且满足  $\sum_{k=1}^{C} = 1$ ; *m* 为模糊常 数, 一般设定 *m* > 1;  $\overline{X}_k(\overline{Y}_k)$  表示  $\widetilde{D}(\widetilde{S})$  第 *k* 类 的模糊聚类中心, 而  $\overline{X}(\overline{Y})$  表示  $\widetilde{D}(\widetilde{S})$  总体均值, 即  $\overline{X} = \frac{1}{n} \sum_{X_i \in \widetilde{D}} X_i(\overline{Y} = \frac{1}{n} \sum_{Y_i \in \widetilde{S}} Y_i).$ 

定义 5. 根据定义 4 中式 (9) 和式 (10) 可得矩 阵模式的模糊最大间距判别分析方法的目标函数为

$$\arg \max_{U^{\mathrm{T}}U=I_{l_{1}},V^{\mathrm{T}}V=I_{l_{2}}} J(U,V) =$$
$$\arg \max_{U^{\mathrm{T}}U=I_{l_{1}},V^{\mathrm{T}}V=I_{l_{2}}} \boldsymbol{\beta}^{\mathrm{MFMMC}} - \gamma \boldsymbol{\alpha}^{\mathrm{MFMMC}}$$
(11)

定义 4 和定义 5 表明, MFMMC 方法与  $(2D)^{2}$ LDA 中的类内散度和类间散度存在着明显 的差异: 1) MFMMC 方法中的类内散度和类间散度 均基于模糊理论; 2) MFMMC 方法中的  $\overline{X}_{k}(\overline{Y}_{k})$  表 示  $D(\widetilde{S})$  第 k 类的模糊聚类中心, 而不是  $D(\widetilde{S})$  第 k 类的均值, 且上述两个分量是基于无监督方法得到 的, 而不是基于有监督的方法.

### 2.2 实现矩阵模式数据的双向特征提取

为了一定程度上有效求解式 (11), 可以采用类

似于文献 [27] 中提出的迭代方法进行求解. 然而通 过分析可知, 上述迭代方法所得的迭代序列一般并 不能保证收敛, 即所得的两个投影矩阵的解只是局 部最优解的近似解<sup>[32]</sup>. 尽管文献 [32] 提出了一种新 颖的迭代方法并证明了该方法产生的迭代序列是收 敛的, 可以得到局部最优解, 从理论上较好地解决了 通过迭代优化方法实现张量模式数据特征提取的一 个基本问题. 然而, 由于该求解过程考虑了投影矩阵 U和V的非线性关系, 因此就必须使用非线性优化 方法才能有效求解<sup>[33]</sup>, 这就导致在实际计算过程中 会不断引入一些舍入误差, 从而在一定程度上不能 保证迭代序列局部收敛, 得到的往往还是局部最优 解的近似解<sup>[33]</sup>.

本文根据矩阵理论和文献 [33] 的基本思想提出 一种能有效求解式 (11) 的近似方法. 该方法通过假 设 *U* 和 *V* 是正交矩阵,并在此基础上改写 *α*<sup>MFMMC</sup> 和 *β*<sup>MFMMC</sup> 中的模糊散度矩阵,最后通过直接求解 矩阵特征值对应的单位特征矢量得到式 (11) 解的近 似值,这一过程不需要进行任何的迭代优化,因此一 定程度上降低了方法的时间和空间复杂度,提高了 求解投影矩阵的效率.

**定理 1.** 假设 *U* 和 *V* 是正交矩阵, 问题 (11) 可 以通过如下的特征值分解方法得到:

假设U和V是正交矩阵,则 $\boldsymbol{\alpha}^{MFMMC}$ 和  $\boldsymbol{\beta}^{MFMMC}$ 中的模糊散度矩阵可以分别改写为

$$S_{w}^{V'} = \sum_{k=1}^{C} \sum_{i=1}^{n} \mu_{ik}^{m} ((X_{i} - \overline{X}_{k})(X_{i} - \overline{X}_{k})^{\mathrm{T}}) \quad (12)$$

$$S_b^{V'} = \sum_{k=1}^C \sum_{i=1}^n \mu_{ik}^m ((\overline{X}_k - \overline{X})(\overline{X}_k - \overline{X})^{\mathrm{T}}) \quad (13)$$

$$S_{w}^{U'} = \sum_{k=1}^{C} \sum_{i=1}^{n} \mu_{ik}^{m} ((X_{i} - \overline{X}_{k})^{\mathrm{T}} (X_{i} - \overline{X}_{k})) \quad (14)$$

$$S_b^{U'} = \sum_{k=1}^C \sum_{i=1}^n \mu_{ik}^m ((\overline{X}_k - \overline{X})^{\mathrm{T}} (\overline{X}_k - \overline{X})) \quad (15)$$

如果假设 **v**<sub>i</sub> 表示 U 或 V 的第 i 个列向量,则 上述问题可以转变为

$$\lambda_1 = \arg \max_{\boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}=1} \boldsymbol{v}^{\mathrm{T}} (S'_b - \gamma S'_w) \boldsymbol{v}$$
(16)

$$\lambda_{k} = \arg \max_{\boldsymbol{v}_{k}^{\mathrm{T}}\boldsymbol{v}_{k}=1, \boldsymbol{v}_{k}^{\mathrm{T}}\boldsymbol{v}_{i}=0(i=1,\cdots,k-1)} \boldsymbol{v}^{\mathrm{T}} (S_{b}' - \gamma S_{w}') \boldsymbol{v}$$
(17)

从式 (16) 看出,  $v_1$  是  $S'_b - \gamma S'_w$  的最大特征值 对应的特征向量. 而  $v_k$  则通过式 (17) 并结合拉格 朗日乘数法求解:

$$L_{k} = \boldsymbol{v}_{k}^{\mathrm{T}} (S_{b}^{\prime} - \gamma S_{w}^{\prime}) \boldsymbol{v}_{k} - \lambda (\boldsymbol{v}_{k}^{\mathrm{T}} \boldsymbol{v}_{k} - 1) - \sum_{q=1}^{k-1} \lambda_{q} \boldsymbol{v}_{k}^{\mathrm{T}} \boldsymbol{v}_{q}$$

$$(18)$$

根据局部最优解的必要条件  $\frac{\partial L_k}{\partial v_k} = 0$ , 则得:

$$2(S'_b - \gamma S'_w)\boldsymbol{v}_k - 2\lambda \boldsymbol{v}_k - \sum_{q=1}^{k-1} \lambda_q \boldsymbol{v}_q = 0 \qquad (19)$$

在式 (19) 的两边同时左乘  $\boldsymbol{v}_{k}^{\mathrm{T}}$ , 则  $\lambda = \lambda_{k} =$  $\boldsymbol{v}_{k}^{\mathrm{T}}(S'_{b} - \gamma S'_{w})\boldsymbol{v}_{k}$ . 同时令:  $\tilde{\lambda}_{k-1} = [\lambda_{1}, \cdots, \lambda_{k-1}]^{\mathrm{T}}$ ,  $Q_{k-1} = [\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{k-1}]$ , 并用  $\boldsymbol{v}_{j}^{\mathrm{T}}(j = 1, \cdots, k-1)$ 左乘式 (19), 则

$$\widetilde{\lambda}_{k-1} = 2Q_{k-1}^{\mathrm{T}}(S_b' - \gamma S_w')\boldsymbol{v}_k$$
(20)

将式 (20) 代入式 (19), 得:

$$(I - Q_{k-1}Q_{k-1}^{\mathrm{T}})(S_b' - \gamma S_w')\boldsymbol{v}_k = \lambda_k \boldsymbol{v}_k \qquad (21)$$

根据式 (21) 可知  $\boldsymbol{v}_k$  为  $(I - Q_{k-1}Q_{k-1}^{\mathrm{T}})(S'_b - \gamma S'_w)$  最大特征值对应的单位特征向量.

根据定理 1 可得求解满足式 (11) 的近似解 U 和 V 的算法.

算法 1. 求解满足式 (11) 的 U 和 V 近似值的 算法

步骤 1. 根据定理 1 的假设前提重新构造式 (12)~(15):  $S_w^{V'}, S_b^{V'}, S_w^{U'}$ 和  $S_b^{U'}$ ;

步骤 2. 计算  $U = [u_1, \cdots, u_{l_1}], V = [v_1, \cdots, v_{l_0}]$ :

1) 设定  $l_1(l_2)$  的初值;

2) 计算  $S_w^{V'} - \gamma S_b^{V'}, S_w^{U'} - \gamma S_b^{U'}$  最大特征值对 应的单位特征向量  $u_1, v_1$ ;

3) 计算  $(I - Q_{k-1}^{U}Q_{k-1}^{U^{\mathsf{T}}})(S_{b}^{V'} - \gamma S_{w}^{V'}), (I - Q_{k-1}^{V}Q_{k-1}^{V^{\mathsf{T}}})(S_{b}^{U'} - \gamma S_{w}^{U'})$  最大特征值对应的单位 特征向量  $\boldsymbol{u}_{k} (k = 2, \cdots, l_{1}), \boldsymbol{v}_{k} (k = 2, \cdots, l_{2});$  其 中  $Q_{k-1}^{U} = [\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{k-1}], Q_{k-1}^{V} = [\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{k-1}].$ 

对于算法 1 需要说明两点: 1) 算法 1 中假设 U 和 V 是正交矩阵是为了简化上述四种模糊散度 矩阵,如此处理虽然一定程度上降低了算法求解式 (11) 的精度,但这样做是有一定依据的.通过传统 迭代优化方法<sup>[27]</sup> 求解式 (11) 时,在求解某个投影 矩阵时也是假定另一个投影矩阵为常量,因此从这 一层面上讲,本文方法即是使用单位矩阵 I 替换 矩阵  $UU^{T}$ ,  $VV^{T}$ ; 2) 通过实际运行算法 1 后得到 的解应该为定义 4 中的形式,即  $U \in \mathbf{R}^{m_1 \times l_1}$  和  $V \in \mathbf{R}^{m_2 \times l_2}$ ,而不是假设前提中的完整的正交矩阵.

#### 2.3 实现矩阵模式数据的模糊聚类

传统的模糊聚类方法一般依据模糊隶属度实现

模式数据的无监督分类,本文也依据这一原理并结合 Lagrange 乘数法来求解满足式 (11) 的模糊隶属度.

根据 Lagrange 乘数法, 求解式 (11) 对应的 Lagrange 公式为

$$L = J(U, V) - \eta_1 (U^{\mathrm{T}}U - I_{l_1}) - \eta_2 (V^{\mathrm{T}}V - I_{l_2}) + \sum_{i=1}^n \lambda_i \left(\sum_{k=1}^C \mu_{ik} - 1\right)$$
(22)

将式 (22) 对 μ<sub>ik</sub> 求偏导数并令其为 0, 得:

$$\mu_{ik} = \left(\frac{\lambda_i}{m(\gamma \|Y_i - \overline{Y}_k\|_F^2) - \|\overline{Y}_k - \overline{Y}\|_F^2}\right)^{\frac{1}{m-1}}$$
(23)

又因为  $\sum_{j=1}^{C} \mu_{ij} = 1$ , 所以有

$$\lambda_{i}^{\frac{1}{m-1}} = \frac{1}{\sum_{j=1}^{C} (\gamma \| Y_{i} - \overline{Y}_{j} \|_{F}^{2} - \| \overline{Y}_{j} - \overline{Y} \|_{F}^{2})^{\frac{1}{m-1}}}$$
(24)

将式 (24) 代入式 (23), 可得式 (25) (见下页). 同理可得  $\tilde{S}$  第 k 类的模糊聚类中心:

$$\overline{Y}_{k} = \frac{\sum_{i=1}^{n} \mu_{ik}^{m} \left(Y_{i} - \frac{1}{\gamma}\overline{Y}\right)}{\sum_{i=1}^{n} \mu_{ik} \left(1 - \frac{1}{\gamma}\right)}$$
(26)

一般要求模糊隶属度满足  $\mu_{ik} \in [0,1]$ ,且由于 模糊常数 m 的选择都要求式 (25)的分子内部表达 式大于 0,然而当某样本  $X_i$  经过双向二维特征提 取后,到第 k 类聚类中心的距离小于或等于第 k 类 聚类中心到总体均值的距离的  $1/\sqrt{\gamma}$  倍 (即满足式 (24))时,将使得式 (25)分子内部表达式为小于或 等于 0 的数,从而导致无法使用式 (25)求解样本  $X_i$ 相对于第 k 类的模糊隶属度,因此有必要通过其他 方法来解决这一问题.

$$\operatorname{tr}(U^{\mathrm{T}}(X_{i} - \overline{X}_{k})VV^{\mathrm{T}}(X_{i} - \overline{X}_{k})^{\mathrm{T}}U) \leq \frac{1}{\gamma}\operatorname{tr}(U^{\mathrm{T}}(\overline{X}_{k} - \overline{X})VV^{\mathrm{T}}(\overline{X}_{k} - \overline{X})^{\mathrm{T}}U) \quad (27)$$

通过研究满足式 (27) 的样本所具有的直观几何 含义后发现, 当某个样本  $X_i$  能满足式 (27), 那么可 以认定该样本严格隶属于第 k 类, 即将该样本硬划 分到第 k 类, 也即规定  $\mu_{ik} = 1, \mu_{ij} = 0$  ( $k \neq j$ ). 下 面通过一个具体的例子 (见图 1)<sup>[28]</sup> 说明上述规定的 合理性.

$$\mu_{ik} = \frac{\left( \|Y_i - \overline{Y}_k\|_F^2 - \frac{1}{\gamma} \|\overline{Y}_k - \overline{Y}\|_F^2 \right)^{\frac{1}{m-1}}}{\sum\limits_{j=1}^C \left( \|Y_i - \overline{Y}_j\|_F^2 - \frac{1}{\gamma} \|\overline{Y}_j - \overline{Y}\|_F^2 \right)^{\frac{1}{m-1}}} = \frac{\left( \operatorname{tr}(U^{\mathrm{T}}(X_i - \overline{X}_k)VV^{\mathrm{T}}(X_i - \overline{X}_k)^{\mathrm{T}}U) - \frac{1}{\gamma}\operatorname{tr}(U^{\mathrm{T}}(\overline{X}_k - \overline{X})VV^{\mathrm{T}}(\overline{X}_k - \overline{X})^{\mathrm{T}}U) \right)^{\frac{1}{m-1}}}{\sum\limits_{j=1}^C \left( \operatorname{tr}(U^{\mathrm{T}}(X_i - \overline{X}_j)VV^{\mathrm{T}}(X_i - \overline{X}_j)^{\mathrm{T}}U) - \frac{1}{\gamma}\operatorname{tr}(U^{\mathrm{T}}(\overline{X}_j - \overline{X})VV^{\mathrm{T}}(\overline{X}_j - \overline{X})^{\mathrm{T}}U) \right)^{\frac{1}{m-1}}}$$
(25)



图 1 硬划分示意图 Fig. 1 Sketch map of the crisp section

其中, "O"和 "□"表示两类样本, "×"、"◇"分别 表示两类样本的聚类中心, "☆"表示总体样本均值,  $\boldsymbol{\omega} = U = V \in \mathbf{R}^{2\times 1}, \gamma = 1$ , "Crisp boundary"表 示硬划分边界, "↔"连接的两个硬划分编辑的区域 为硬划分区域.

对图 1 中加 "•" 的样本进行理论分析后,发现 这些样本确实能满足式 (27),因此不能使用式 (25) 计算这类样本所对应的模糊隶属度,但依据这些样 本在图 1 中所具有的直观几何含义,可以将这一类 型的样本进行硬划分处理,因此从这一层面上讲,上 述硬划分的规定是合理的,类似的方法在文献 [34] 中也得到了成功的运用.

式 (25) 和式 (27) 也反映了参数 γ 的重要性, 这是因为该参数一定程度上决定了被硬划分样本 的数目,同时也决定了会不会出现某一个样本被硬 划分多次的情况,因此有必要探讨该参数的设定问 题.

### 2.3.1 调节参数 γ 的设定

式 (25) 和式 (27) 表明, 参数  $\gamma$  一定程度上决 定着聚类的效果, 特别是在判断一个样本是否采用 硬划分时尤为重要. 从直观意义上看, 为了避免一个 样本被多次硬划分到不同的类,一般最好要求该样本被双向投影后到某类聚类中心的距离应该小于或等于不同类别中心之间最小距离的 $1/\sqrt{N}$  ( $N \ge 4$ ) 倍.因此,根据这一直观的含义并通过如下定理可以 在一定程度上解决参数  $\gamma$  设定的问题,同时也可以 避免出现同一样本被硬划分多次的情况.

定理 2. 设某样本  $X_i$ , 第 k 类聚类中 心  $\overline{X}_k$  和总体均值  $\overline{X}$  分别经过双向二维投影 后, 如果令  $\gamma = \max\{\gamma_1, \dots, \gamma_C\}$ , 其中  $\gamma_k =$  $\frac{N \max_j \operatorname{tr}(U^{\mathrm{T}}(\overline{X}_j - \overline{X})VV^{\mathrm{T}}(\overline{X}_j - \overline{X})^{\mathrm{T}}U)}{\min_{k \neq k^*} \operatorname{tr}(U^{\mathrm{T}}(\overline{X}_k - \overline{X}_k)VV^{\mathrm{T}}(\overline{X}_{k^*} - \overline{X}_k)^{\mathrm{T}}U)}$   $(N \ge 4)$ , 则 式 (27) 可以写为

$$\operatorname{tr}(U^{\mathrm{T}}(X_{i} - \overline{X}_{k})VV^{\mathrm{T}}(X_{i} - \overline{X}_{k})^{\mathrm{T}}U) \leq \frac{1}{N} \min_{k \neq k^{*}} \operatorname{tr}(U^{\mathrm{T}}(\overline{X}_{k^{*}} - \overline{X}_{k})VV^{\mathrm{T}}(\overline{X}_{k^{*}} - \overline{X}_{k})^{\mathrm{T}}U)$$

$$(28)$$

证明.根据式 (27),有:  
tr(
$$U^{\mathrm{T}}(X_i - \overline{X}_k)VV^{\mathrm{T}}(X_i - \overline{X}_k)^{\mathrm{T}}U$$
)  $\leq$   
 $\frac{1}{\gamma_k}$ tr( $U^{\mathrm{T}}(\overline{X}_k - \overline{X})VV^{\mathrm{T}}(\overline{X}_k - \overline{X})^{\mathrm{T}}U$ ) (29)

根据定理的假设前提,将 $\gamma_k$ 代入式 (29)并 运用 max<sub>j</sub> tr( $U^{\mathrm{T}}(\overline{X}_j - \overline{X})VV^{\mathrm{T}}(\overline{X}_j - \overline{X})^{\mathrm{T}}U$ ) ≥ tr( $U^{\mathrm{T}}(\overline{X}_k - \overline{X})VV^{\mathrm{T}}(\overline{X}_k - \overline{X})^{\mathrm{T}}U$ )的条件可得式 (28).

根据定理 2 可知,调节参数  $\gamma$  的设定方法具有 较为明显的几何直观含义,从而一定程度上有利于 提高聚类的稳定性.同时式 (28) 也表明了参数 N对模糊聚类效果的影响,即 N 越大,该样本被硬划 分的可能性越小,反之该样本被硬划分的可能性越 大,从而也说明在聚类过程中,N 决定了被硬划分样 本的数目.因此从 N 的极限形式来看,当  $N \rightarrow \infty$ 时,该聚类过程可以进化为绝对的模糊聚类过程;当  $N \rightarrow 0$  时,该聚类过程退化为经典的硬划分聚类.

## 2.4 确定数据集 D 的模糊聚类中心

为了有效地实现第 2.2 节和第 2.3 节的功能, 还 需解决一个关键的问题: 基于数据集  $\tilde{D}$  的第 k 类聚 类中心  $\overline{X}_k$  如何进行有效的计算. 该矩阵不但会影响算法 1 计算式 (11) 的近似解, 在一定程度上也会影响最终模糊聚类的效果, 因此有必要讨论该设定问题.

然而,由于式 (11) 中同时存在双向特征提取矩阵 U 和 V,从而导致通过求解满足式 (11) 的必要条件直接求解  $\overline{X}_k$  尤为困难.而在第 2.2 节中假设 U和 V是正交矩阵,这为在一定程度上有效求解  $\overline{X}_k$ 提供了思路.

**定理 3.** 假设 U 和 V 是正交矩阵, 如果式 (11) 有解, 则:

$$\overline{X}_{k} = \frac{\sum_{i=1}^{n} \mu_{ik}^{m} (X_{i} - \frac{1}{\gamma} \overline{X})}{\sum_{i=1}^{n} \mu_{ik}^{m} (1 - \frac{1}{\gamma})}$$
(30)

**证明.** 根据定理假设 V 是正交矩阵并结合式 (11) 对应的 Lagrange 公式 (22), 则满足式 (11) 必 须有:  $\frac{\partial L}{\partial X_k} = 0$ , 则有:

$$2U^{\mathrm{T}} \sum_{i=1}^{n} \mu_{ik}^{m} (\overline{X}_{k} - \overline{X}) U =$$
$$-2\gamma U^{\mathrm{T}} \sum_{i=1}^{n} \mu_{ik}^{m} (X_{i} - \overline{X}_{k}) U \qquad (31)$$

又因为根据定理假设前提 U 是正交矩阵, 所以 有:

$$\sum_{i=1}^{n} \mu_{ik}^{m}(\overline{X}_{k} - \overline{X}) = -\gamma \sum_{i=1}^{n} \mu_{ik}^{m}(X_{i} - \overline{X}_{k}) \quad (32)$$

则有:

$$\sum_{i=1}^{n} \mu_{ik}^{m} (\gamma - 1) \overline{X}_{k} = \sum_{i=1}^{n} \mu_{ik}^{n} (\gamma X_{i} - \overline{X}) \qquad (33)$$

所以式 (30) 成立.

从定理 3 可知, 在运行算法 1 时, 如果取满足式 (30) 的  $\overline{X}_k$ , 那么所得投影矩阵的近似值是近似程 度最好的而且是最稳定的. 同时通过观察式 (26) 与 式 (30) 发现, 当对式 (30) 中  $\overline{X}_k$  的两边分别同时作 用  $U^{\text{T}}$  和 V 时, 所得到的变换矩阵正是式 (26) 中的  $Y_k$ , 即是数据集  $\widetilde{D}$  的第 k 类聚类中心  $\overline{X}_k$  通过提取 后所得  $Y_k$  即是数据集  $\widetilde{S}$  的第 k 类聚类中心, 这一 方法在许多有监督特征提取方法<sup>[22,25–27]</sup> 中被广泛 使用, 以便在实现特征提取的同时尽可能地保持原 始输入样本内在的全局结构.

通过以上分析,可得具有模糊聚类功能的双向 二维无监督特征提取方法: (2D)<sup>2</sup>UFFCA.

算法 2. (2D)<sup>2</sup>UFFCA

步骤 1. 给定误差控制量  $\varepsilon$ ,最大迭代次数 maxIter,令 p的初值为 0 并随机产生模糊隶属度 矩阵  $\Lambda^p = (\mu_{ik}^p)_{n \times C}$ ,设定参数  $\gamma$ , m, N,  $l_1$ ,  $l_2$  初始 值.

步骤 2. 根据式 (30) 计算初始聚类中心  $X_k^p$   $(k = 1, \dots, C)$ .

步骤 3. 根据算法 1 计算  $U^p \in \mathbf{R}^{m_1 \times l_1}$  和  $V^p \in \mathbf{R}^{m_2 \times l_2}$ .

步骤 4. 根据定理 2 设定参数 γ.

步骤 5. 计算模糊隶属度矩阵  $\Lambda^{p+1} = (\mu_{ik}^{p+1})_{n \times C}$ : 对于  $\forall X_i \in \tilde{D}$ , 如果该样本满足式 (28), 则令  $\mu_{ik}^{p+1} = 1, \mu_{ij}^{p+1} = 0 \ (k \neq j)$ . 否则使用式 (25) 求解  $\mu_{ik}^{p+1}$ .

步骤 6. 根据式 (30) 计算聚类中心  $\overline{X}_{k}^{p+1}(k = 1, \dots, C)$ .

步骤 7. 如果  $|J(U,V)^{p+1} - J(U,V)^p| \leq \varepsilon$  或  $p \geq maxIter$  时,输出模糊隶属度矩阵  $\Lambda^{p+1}$ ,聚 类中心  $\overline{X}_k^{p+1}(k = 1, \dots, C)$ ,根据算法 1 计算投影 矩阵  $U^{p+1} \in \mathbf{R}^{m_1 \times l_1}$ 和  $V^{p+1} \in \mathbf{R}^{m_2 \times l_2}$ . 否则令 p = p + 1,转至步骤 3.

#### 3 实验

Π

通过测试相应的数据集来说明 (2D)<sup>2</sup>UFFCA 方法的基本聚类能力、处理大数据集的聚类能力和 处理矩阵模式数据的无监督特征提取能力. 仿真 实验运行的计算机系统为 Vista 操作系统、Inter Core2 T5500 1.66 G CPU 处理器、1.5 G 内存, 使 用 Matlab 7.0 仿真软件包.

#### 3.1 测试基本的聚类能力

UCI 数据集<sup>[35]</sup> 和基因数据集 Yeast galactose data<sup>[36]</sup> 常被用来测试算法的聚类效果<sup>[28, 37]</sup>. 在本测试过程中,通过测试 UCI 数据的 5 个数据子集: Iris 数据集、Glass 数据集、Lymphography 数据 集、Zoo 数据集以及 Yeast galactose data 数据集说 明 (2D)<sup>2</sup>UFFCA 方法的基本聚类能力.为了反映本 文方法的有效性,首先需要将上述 5 个矢量表示的 数据集转换成相应的矩阵模式,如表 1 所示,同时在 测试过程中令参数  $\varepsilon = 1E - 5$ , maxIter = 100,  $\gamma = 2$ , m = 2, n = 4,并将测试精度 (Rand index<sup>[38]</sup>) 和收敛性与 FCM 方法所得结果进行比 较,如表 2 和图 2 所示.

为了说明本文方法参数 N 对模糊划分的影响, 分别令 N = 4,400,4000,40000 来测试 Iris 数据 集,并用该数据集的 150 个样本隶属于第一类的模 糊隶属度来加以说明,如图 3 所示.另一方面,通过 分别测试 Yeast galactose data 数据集不同的矩阵 模式以及不同特征提取效果对精度的影响来说明本 文方法的聚类效果与具体的矩阵模式的相关性,如 图 4 所示.

通过对以上测试的分析,在一定程度上可以得 到如下基本结论:

1) 表 2 中两种方法的聚类精度的比较结果以及 图 2 所表示的两种方法在处理 Iris 数据集的收敛性 对比说明  $(2D)^2$ UFFCA 算法具有基本的聚类能力. 在处理传统矢量模式数据特别是高维基因数据时, 只要选择合适的矩阵模式同时选取适当的列 (行) 投 影矩阵  $U \in \mathbf{R}^{m_1 \times l_1}$  ( $V \in \mathbf{R}^{m_2 \times l_2}$ ) 就可以取得较为 合理的聚类效果,从而一定程度上说明本文方法在 处理传统模式数据时不会因为使用矩阵模式而降低 方法的聚类有效性. 图 2 (a) 是本文方法取  $l_1 = 2, l_2 = 1$  时测试 Iris 数据的收敛性表现,从图中看出,本文方法只需 迭代 12 次就可以满足相应的收敛条件,从而一定程 度上可以说明两个问题: a) 本文方法在实验过程中 满足  $|J(U,V)^{p+1} - J(U,V)^p| \le \varepsilon$  时退出,这表明 在使用矩阵模式处理相应数据时一定程度上可以保 证迭代收敛; b) 本文方法具有较好的收敛速度.

2) 图 3 是本文方法选取不同参数 N 并结合  $l_1 = 2, l_2 = 1$  的情况下通过测试 Iris 数据集得到 的,表明参数 N 对模糊划分程度的影响. 当选取 N = 4,400,4000 时,在 150 个样本中分别有 135, 24,2 个样本属于硬划分 (分别对应图 3 (a) ~ 3 (c)),

表 1 Iris, Glass, Lymphography, Zoo, Yeast galactose data 数据集 Table 1 Iris, Glass, Lymphography, Zoo, and Yeast galactose data datasets

| Datasets             | Number of samples | Number of features | Number of subjects | Matrix model  |
|----------------------|-------------------|--------------------|--------------------|---------------|
| Iris                 | 150               | 4                  | 3                  | $2 \times 2$  |
| Glass                | 214               | 9                  | 6                  | $3 \times 3$  |
| Lymphography         | 148               | 18                 | 4                  | $6 \times 3$  |
| Zoo                  | 101               | 16                 | 5                  | $4 \times 4$  |
| Veget relactors data | 205               | 80                 | 4                  | $10 \times 8$ |
| reast galactose data | 205               | 80                 | 4                  | $8 \times 10$ |

表 2 对 Iris, Glass, Lymphography, Zoo, Yeast galactose data 数据集的识别精度比较

Table 2 Comparison of recognition performances on Iris, Glass, Lymphography, Zoo, and Yeast galactose data datasets

| Algorithm      | Datasets             |                      |                      |                      |                        |  |  |  |  |
|----------------|----------------------|----------------------|----------------------|----------------------|------------------------|--|--|--|--|
| Algorithm      | Iris                 | Glass                | Lymphography         | Zoo                  | Yeast galactose data   |  |  |  |  |
| FCM            | 0.893                | 0.7117               | 0.5820               | 0.7992               | 0.85567                |  |  |  |  |
|                |                      |                      |                      |                      | 0.9847(10	imes 8)      |  |  |  |  |
| $(2D)^2$ UFFCA | 0.92671              | 0.73454              | 0.59469              | 0.8996               | $(l_1 = 3, l_2 = 4)$   |  |  |  |  |
| (2D) OFFCA     | $(l_1 = 2, l_2 = 1)$ | $(l_1 = 3, l_2 = 2)$ | $(l_1 = 4, l_2 = 1)$ | $(l_1 = 2, l_2 = 4)$ | $0.97972(8 \times 10)$ |  |  |  |  |
|                |                      |                      |                      |                      | $(l_1 = 2, l_2 = 4)$   |  |  |  |  |



Fig. 2 Comparison of iterative convergence on (2D)<sup>2</sup>UFFCA and FCM methods

而当  $N = 40\,000$  时则没有一个样本被硬划分 (对应 图 3 (d)), 这充分说明本文方法中的参数 N 确实起 到了控制模糊划分的作用, 从而验证定理 2 中参数 N 所具有的性质. 通过测试发现, 随着参数 N 增大, 本文方法的聚类精度也有所提高, 如当 N = 4 时精 度为 0.926 71, 而当  $N = 400, 4\,000, 40\,000$  时精度 可达 0.957 49, 这说明本文方法具有作为模糊聚类方 法的基本特点, 即模糊程度越高一般越能反映样本 的客观分类. 3) 图 4 是本文方法在测试基因数据集 Yeast galactose data 时分别选取 10 × 8 和 8 × 10 两种 矩阵模式对应的聚类精度示意图. 从图中可以看出, 当将数据集 Yeast galactose data 转换成不同的矩 阵模式时,本文方法的测试精度有一定的差异性,这 说明其聚类效果一定程度上依赖于相应的矩阵模式. 同时还可以看出,相对同一种矩阵模式,不同列(行) 方向的特征提取效果也在一定程度上影响本文方法 的有效性.



#### 3.2 测试大数据集的聚类效果

为了有效地说明本文方法具有较强的 模糊聚类能力,选取1个UCI数据子集<sup>[36]</sup> — Shuttle数据集,以及手写体数字数据集 USPS、MNIST (http://www.cs.uiuc.edu/homes/ dengcai2/)的2个数据子集共3个大容量数据集来 测试本文方法,如表3和图5所示.USPS、MNIST 作为两种具有矩阵模式的图像数据,分别有 9298、4000个样本,为了提高测试效率,在本测试过 程中在上述两种数据集中分别随机选取2500、2160 个样本作为测试样本.

为了测试本文方法在处理大数据集时的聚类 效果,使用 FCM、FCS<sup>[34]</sup> 方法与 (2D)<sup>2</sup>UFFCA 方 法进行测试比较. 从散度的角度上讲,上述三种 方法具有一定的可比较性<sup>[34]</sup>. 在测试过程中令 FCS 方法中 $\eta = 2, \beta = 0.5, 本文方法中 \gamma = 2,$ 其他两种方法中共有的参数则令为 $\varepsilon = 1E-5,$ maxIter = 50, m = 2. 测试精度比较见表 4.

通过对上述实验结果的分析,可以得到如下结 论:

1) 本文方法具有较强的聚类能力. 特别是在处 理矢量模式的大容量 Shuttle 数据集时,尽管将该数 据转换成矩阵模式加以处理,但并没有降低对该数 据集的识别能力,这在一定程度上说明本文方法具 有处理大容量矢量模式数据的模糊聚类能力.

2) 在处理两种手写体数据集时,本文方法与 FCM、FCS 方法相比具有更好的聚类精度.如在测 试 USPS 数据时,本文方法可以有效聚类 2124 个 样本,分别比 FCS 和 FCM 方法多识别 401 个和 739 个样本;在测试 MNIST 数据时本文方法可以 有效识别 1580 个样本.这是因为手写体图像数据 是典型的矩阵模式数据,而本文方法在测试上述两种数据集时,并没有将矩阵模式转换为矢量模式进行处理,而是对矩阵模式数据直接进行模糊聚类,较好地保持了原图像数据间的空间结构信息,从而提高了模糊聚类能力;同时由于本文方法在实现模糊 聚类的过程中充分地使用了适合图像数据的特征提取技术,也即本文方法能根据聚类过程中所得到的 双向二维特征变换矩阵来实现原图像数据的特征降 维,使得变换后的数据显得更为简单,从而提高模糊 聚类的效果.尽管 FCM、FCS 方法也考虑了类内散 度矩阵和类间散度矩阵对模糊聚类的影响,但显然 不具备本文方法通过使用特征提取技术来实现类间 最大、类内最小的这一技术.

#### 3.3 测试特征提取能力

为了有效说明 (2D)<sup>2</sup>UFFCA 方法的无监督的特征提取能力,在本测试过程中使用两个经典的人脸图像数据集:ORL (32 × 32)、Yale (32 × 32) (http://www.cs.uiuc.edu/homes/).ORL 数据集包含 40 个类别的样本,每一类别由 10 种不同的人脸表情组成,如图 6 所示;Yale 数据集包含 15 个类别的人脸图像,每一类由 11 种不同表情的人脸图像 组成,如图 7 所示.

在测试过程中,使用 4 种无监督的特征提取方法: PCA, 2DPCA, (2D)<sup>2</sup>PCA, FLDC 方法与本文的 (2D)<sup>2</sup>UFFCA 方法进行测试比较.在此过程中分别选取上述两种人脸图像数据集中每类的前 2 个、3 个、4 个和 5 个样本作为训练样本,剩余样本作为测试样本,为了更好地表现文中算法 1 所具有的特征 值分解的效率和 (2D)<sup>2</sup>UFFCA 方法总体特征提取的效果,分别从测试精度 (最近邻分类器 1-NN)、特征提取维数和一次特征值分解所 消耗的 CPU时间

| 表 3     | Shuttle, USPS, MNIST 数据集          |
|---------|-----------------------------------|
| Table 3 | Shuttle, USPS, and MNIST datasets |

| Datasets | Number of samples | Number of features | Number of subjects | Matrix model   |
|----------|-------------------|--------------------|--------------------|----------------|
| Shuttle  | 14500             | 9                  | 7                  | $3 \times 3$   |
| USPS     | 2500              | 256                | 10                 | $16 \times 16$ |
| MNIST    | 2160              | 784                | 10                 | $28 \times 28$ |

表 4 Shuttle, USPS 和 MNIST 数据集的识别精度比较

| Table 4 | Comparison | of recognition | performances | on Shuttle  | USPS    | and MNIST    | datasets |
|---------|------------|----------------|--------------|-------------|---------|--------------|----------|
| Lable 4 | Comparison | or recognition | periormances | on snuttle. | 0.01.0. | and wining I | uatasets |

| Algorithm      |                      | Datasets              |                       |
|----------------|----------------------|-----------------------|-----------------------|
|                | Shuttle              | USPS                  | MNIST                 |
| FCM            | 0.4267               | 0.5540                | 0.5821                |
| FCS            | 0.46295              | 0.6890                | 0.5830                |
| $(2D)^2$ UFFCA | 0.5666               | 0.84953               | 0.73552               |
| (2D)-OFFCA     | $(l_1 = 3, l_2 = 1)$ | $(l_1 = 2, l_2 = 10)$ | $(l_1 = 19, l_2 = 3)$ |

来加以说明. 在此测试过程中, 令 FLDC 方法和本 文方法中的调节参数分别为  $\gamma = 0.1$  和  $\gamma = 2$ , 两 者具有的相同参数设定为  $\varepsilon = 1E - 5$ , maxIter = 30, m = 2, 且假设在测试 PCA 和 FLDC 方法时将 测试图像投影到 d 维子空间, 测试 2DPCA 方法时 将测试图像投影到  $32 \times d$  的张量子空间, 而在测试  $(2D)^2$ PCA 和本文方法时则将测试图像投影到  $d^2$ (即  $l_1 = l_2 = d$ ) 的张量子空间. 测试结果见表 5、表 6 和图 8.

根据测试两类人脸识别数据所得的结果,可以 得到如下结论:

1) 从测试精度和特征提取的维数上来看,表5、



表 6 反映出 (2D)<sup>2</sup>UFFCA 方法具有较强的特征提 取能力, 说明本文方法由于引进了模糊理论而使得 特征提取效果更符合人脸图像所处的现实外部环境, 如光照的强弱特点等<sup>[39]</sup>, 提高了特征提取后的分类 精度. 尽管 FLDC 方法也是通过引进模糊理论实现 特征提取, 但从实验结果来看该方法的特征提取效 果同本文方法相比还略显不足. 这是由于 FLDC 方 法只能处理矢量模式数据, 而没有充分考虑人脸图 像数据之间具有的空间结构信息, 特别是 FLDC 方 法将求解模糊隶属度和实现特征提取作为两个独立 的过程来实现, 而本文的方法则将求解隶属度与实 现特征提取进行了有机的统一, 从而在一定程度上



(b) MNIST 手写体图像数据 0~9

Fig. 5 Examples of handwritten digits from 0 to 9

图 5



图 7 Yale 数据集中某一类所有图像

Fig. 7 All images in a certain class in Yale datasets

表 5 对 ORL 数据集识别效果比较

|  | Table 5 | Comparison | of re | cognition | performances | on | ORL | datasets |
|--|---------|------------|-------|-----------|--------------|----|-----|----------|
|--|---------|------------|-------|-----------|--------------|----|-----|----------|

| Number of<br>training samples | 2                             | 2       | 3                             |         | 4                            |         | 5                       |         |
|-------------------------------|-------------------------------|---------|-------------------------------|---------|------------------------------|---------|-------------------------|---------|
| Algorithm                     | Accuracy                      | Time    | Accuracy                      | Time    | Accuracy                     | Time    | Accuracy                | Time    |
| Algorithm                     | (Dimension)                   | (s)     | (Dimension)                   | (s)     | (Dimension)                  | (s)     | (Dimension)             | (s)     |
| PCA                           | 0.6938<br>(73)                | 16.7701 | 0.71786<br>(121)              | 15.9121 | 0.80417<br>(156)             | 14.8201 | 0.84 (201)              | 14.2117 |
| FLDC                          | 0.6938<br>(214)               | 59.264  | 0.7250<br>(276)               | 56.16   | 0.82083<br>(403)             | 63.753  | 0.855<br>(446)          | 64.975  |
| 2DPCA                         | 0.71875<br>$(13^{\times 32})$ | 0.014   | 0.76429<br>$(18^{\times 32})$ | 0.014   | 0.8625<br>$(14^{\times 32})$ | 0.015   | $0.89 \ (7^{	imes 32})$ | 0.014   |
| $(2D)^2 PCA$                  | 0.72188<br>(10 <sup>2</sup> ) | 0.017   | 0.76786<br>(19 <sup>2</sup> ) | 0.016   | 0.8667<br>(18 <sup>2</sup> ) | 0.016   | $0.905$ $(18^2)$        | 0.018   |
| $(2D)^2 UFFCA$                | 0.72813<br>$(20^2)$           | 0.019   | 0.7750<br>$(18^2)$            | 0.024   | $0.8708 \ (17^2)$            | 0.029   | 0.905<br>$(17^2)$       | 0.034   |

| Number of<br>training samples | 2                         | 2       | 3                            |         | 4                            |         | 5                            |         |
|-------------------------------|---------------------------|---------|------------------------------|---------|------------------------------|---------|------------------------------|---------|
| Algorithm                     | Accuracy                  | Time    | Accuracy                     | Time    | Accuracy                     | Time    | Accuracy                     | Time    |
| Algorithm                     | (Dimension)               | (s)     | (Dimension)                  | (s)     | (Dimension)                  | (s)     | (Dimension)                  | (s)     |
| PCA                           | 0.4222<br>(29)            | 18.1741 | 0.45 (44)                    | 17.4409 | 0.52381<br>(57)              | 17.1757 | 0.5778<br>(74)               | 16.6297 |
| FLDC                          | 0.4444<br>(189)           | 59.906  | 0.45 (153)                   | 57.843  | 0.54286<br>(340)             | 62.285  | 0.6 (249)                    | 59.748  |
| 2DPCA                         | $0.5778$ $(7^{	imes 32})$ | 0.015   | $0.63333$ $(7^{	imes 32})$   | 0.016   | 0.67619<br>$(6^{	imes 32})$  | 0.014   | 0.71111<br>$(7^{\times 32})$ | 0.015   |
| $(2D)^2 PCA$                  | $0.5778$ $(7^2)$          | 0.016   | $0.63333$ $(8^2)$            | 0.015   | 0.68571<br>(8 <sup>2</sup> ) | 0.015   | 0.71111<br>(8 <sup>2</sup> ) | 0.017   |
| $(2D)^2 UFFCA$                | $(8^2)$                   | 0.051   | 0.64167<br>(7 <sup>2</sup> ) | 0.062   | 0.69524<br>(8 <sup>2</sup> ) | 0.073   | $0.73333$ $(6^2)$            | 0.079   |

表 6 对 Yale 数据集识别效果比较 Table 6 Comparison of recognition performances on Yale datasets



图 8 不同训练样本数对 (2D)<sup>2</sup>UFFCA 方法特征提取效果的影响

Fig. 8 Performances of (2D)<sup>2</sup>UFFCA method with different numbers of training samples

提高了图像样本模糊隶属度的区分度,再次进行特征提取时会反映不同样本对特征提取效果的贡献程度.

2) 从进行特征值分解所消耗的 CPU 时间来看, 本文使用算法 1 来求解满足式 (11) 的 U 和 V 近似 值具有一定的有效性,同时在实验过程中也尝试使 用文献 [32] 中的迭代方法来求解,所得 CPU 时间 是算法 1 的 1000 倍左右,从而说明算法 1 是可行 的.

3) 从图 8 可以看出,本文方法随着训练样本数 量的增加,测试精度不断提高,从而在一定程度上反 映特征提取效果与训练样本数目之间成某种正比例 的关系,这符合作为一种无监督特征提取方法所应 具备的基本条件.

### 4 总结

本文运用模糊技术和张量理论,提出一种矩 阵模式的模糊最大间距判别准则,并在此基础上 形成具有模糊聚类功能的双向二维特征提取方法 (2D)<sup>2</sup>UFFCA. 该方法不但能直接实现矩阵模式数 据的无监督聚类,而且还可以对矩阵模式数据进行 双向二维特征提取,实现特征降维. 同时从理论上较 好地解决了矩阵模式的模糊最大间距判别准则中的 调节参数 γ 的问题,并提出一种能有效求解计算矩 阵模式数据的正交投影变换矩阵的方法.最后通过 测试 UCI 数据集、手写体数据集和人脸图像数据集 表明本文方法的有效性.但从另一方面来说,文献 [40] 中的方法在实现特征提取后又使用了具有明确 直观含义的特征选择方法来进一步降低特征的冗余 度,从而提高了算法特征降维的效果.因此,研究如 何引进合适的特征选择技术将是我们的下一个研究 目标.此外,由于算法1 计算得到的投影矩阵 U 和 V 会直接影响到本文方法的聚类效果和特征提取能 力,因此如何改进算法1 以提高方法的稳定性,也将 是我们面临的难题.

#### References

- Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86
- 2 Cui Guo-Qin, Gao Wen. Face recognition based on two-layer generate virtual data for SVM. Chinese Journal of Computers, 2005, 28(3): 368-376 (崔国勤, 高文. 基于双层虚拟视图和支持向量的人脸识别方法. 计 算机学报, 2005, 28(3): 368-376)
- 3 Fu Y, Yuan J S, Li Z, Huang T S, Wu Y. Query-driven locally adaptive Fisher faces and expert-model for face recognition. In: Proceedings of the IEEE International Conference on Image Processing. San Antonio, USA: IEEE, 2007. 141–144
- 4 Ye Jian-Hua, Liu Zheng-Guang. Multi-modal face recognition based on local binary pattern and Fisherfaces. Computer Engineering, 2009, **35**(11): 193–195 (叶剑华, 刘正光. 基于 LBP 和 Fisherfaces 的多模态人脸识别. 计算机工程, 2009, **35**(11): 193–195)
- 5 Bian Zhao-Qi, Zhang Xue-Gong. Pattern Recognition (Second Edition). Beijing: Tsinghua University Press, 2000.
  87-90
  (边肇祺,张学工. 模式识别 (第二版). 北京:清华大学出版社, 2000.
  87-90)
- 6 Jolliffe I T. Principal Component Analysis. New York: Springer, 1986
- 7 Park M S, Choi J Y. Theoretical analysis on feature extraction capability of class-augmented PCA. Pattern Recognition, 2009, 42(11): 2353-2362
- 8 Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7(2): 179–188
- 9 Hsieh P F, Wang D S, Hsu C W. A linear feature extraction for multiclass classification problems based on class mean and covariance discriminant information. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2006, 28(2): 223-235
- 10 Wang X, Tang X. A unified framework for subspace face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1223-1228
- Peng J, Zhang P, Riedel N. Discriminant learning analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(6): 1614-1625

- 12 Song Feng-Xi, Zhang Da-Peng, Yang Jing-Yu, Gao Xiu-Mei. Adaptive classification algorithm based on maximum scatter difference discriminant criterion. Acta Automatica Sinica, 2006, **32**(2): 541-549 (宋枫溪, 张大鹏, 杨静宇, 高秀梅. 基于最大散度差鉴别准则的自适 应分类算法. 自动化学报, 2006, **32**(4): 541-549)
- 13 Li H, Jiang T, Zhang K. Efficient and robust feature extraction by maximum margin criterion. *IEEE Transactions on Neural Networks*, 2006, **17**(1): 157–165
- 14 Zheng W M, Zou C, Zhao L. Weighted maximum margin discriminant analysis with kernels. *Neurocomputing*, 2005, 67: 357–362
- 15 Liu J, Chen S C, Tan X Y, Zhang D Q. Comments on "efficient and robust feature extraction by maximum margin criterion". *IEEE Transactions on Neural Networks*, 2007, 18(6): 1862–1864
- 16 Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang H. Multilinear discriminant analysis for face recognition. *IEEE Transactions on Image Processing*, 2007, **16**(1): 212–220
- 17 Lei Z, Chu R, He R, Liao S, Li S Z. Face recognition by discriminant analysis with Gabor tensor representation. In: Proceedings of the International Conference of Biometrics. Seoul, Korea: Springer, 2007. 87–95
- 18 Kim Y D, Choi S. Color face tensor factorization and slicing for illumination-robust recognition. In: Proceedings of the International Conference of Biometrics. Seoul, Korea: Springer, 2007. 19–28
- 19 Lu H P, Plataniotis K N, Venetsanopoulos A N. Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition. *IEEE Transactions on Neural Networks*, 2009, **20**(1): 103–123
- 20 Ren C X, Dai D Q. Incremental learning of bidirectional principal components for face recognition. *Pattern Recogni*tion, 2010, **43**(1): 318–330
- 21 Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. *IEEE Transactions on Pattern Analy*sis and Machine Intelligence, 2004, **26**(1): 131–137
- 22 Li M, Yuan B. 2D-LDA: a statistical linear discriminant analysis for image matrix. *Pattern Recognition Letters*, 2005, 26(5): 527-532
- 23 Xiong H L, Swanmy M N S, Ahmad M O. Two-dimensional FLD for face recognition. Pattern Recognition, 2005, 38(7): 1121-1124
- 24 Jing X Y, Wong H S, Zhang D. Face recognition based on 2D Fisherface approach. Pattern Recognition, 2006, 39(4): 707-710
- 25 Wang J G, Yang W K, Lin Y S, Yang J Y. Two-directional maximum scatter difference discriminant analysis for face recognition. *Neurocomputing*, 2008, **72**(1–3): 352–358
- 26 Zhang D Q, Zhou Z H. (2D)<sup>2</sup>PCA: two-directional twodimensional PCA for efficient face representation and recognition. Neurocomputing, 2005, 69(1–3): 224–231
- 27 Ye J P, Janardan R, Li Q. Two-dimensional linear discriminant analysis [Online], available: http://books.nips.cc/ nips17.html, November 29, 2011

- 初 化 于
- 28 Gao Jun, Wang Shi-Tong. Fuzzy maximum scatter difference discriminant criterion based clustering algorithm. Journal of Software, 2009, 20(11): 2939-2950 (皋军, 王士同. 基于模糊最大散度差判别准则的聚类方法. 软件学 报, 2009, 20(11): 2939-2950)
- 29 Li C H, Kuo B C, Lin C T. LDA-based clustering algorithm and its application to an unsupervised feature extraction. *IEEE Transactions on Fuzzy Systems*, 2011, **19**(1): 152–163
- 30 Yang W K, Yan H, Wang J G, Yang J Y. Face recognition using complete fuzzy LDA. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1–4
- 31 Yang W K, Yan X Y, Zhang L, Sun C Y. Feature extraction based on fuzzy 2DLDA. Neurocomputing, 2010, 73(10-12): 1556-1661
- 32 Wang H, Yan S C, Huang T S, Tang X O. A convengent solution to tensor subspace learning. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence. Hyderabad, India: AAAI, 2007. 629–634
- 33 Wang F, Wang X. Neighborhood discriminant tensor mapping. Neurocomputing, 2009, 72(7-9): 2035-2039
- 34 Wu K L, Yu K, Yang M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. *Pattern Recognition Letters*, 2005, **26**(5): 639–652
- 35 Blake C L, Merz C J. UCI machine learning repository [Online], available: http://www.ics.uci.edu/~mlearn/MLRepository.html, November 29, 2011
- 36 Medvedovic M, Yeung K Y, Bumgarner R E. Bayesian mixture model based clustering of replicated microarray data[Online], available: http://bioinformatics.oxfordjournals.org/content/20/8/12-22.full.pdf, November 29, 2011
- 37 Chung F L, Wang S T, Deng Z H, Shu C, Hu D. Clustering analysis of gene expression data based on semi-supervised clustering algorithm. *Soft Computing*, 2006, 10(11): 981–993
- 38 Jain A K, Dubes R C. Algorithms for Clustering Data. New Jersey: Prentice Hall, 1988
- 39 Kwak K C, Pedrycz W. Face recognition using a fuzzy Fisherface classifier. Pattern Recognition, 2005, 38(10): 1717-1732

40 Yang J, Zhang D, Yong X, Yang J Y. Two-dimensional discriminant transform for face recognition. *Pattern Recogni*tion, 2005, **38**(7): 1125–1129



**皋 军**东南大学自动化学院博士后,盐 城工学院信息工程学院副教授.主要研 究方向为人工智能,模式识别,数据挖掘, 模糊系统.本文通信作者. E-mail: gjxllin@vahoo.cn

(GAO Jun Postdoctoral at the

School of Automation, Southeast University and associate professor at the

School of Information Engineering, Yancheng Institute of Technology. His research interest covers artificial intelligence, pattern recognition, data mining, and fuzzy system. Corresponding author of this paper.)



**孙长银** 东南大学自动化学院教授. 主要研究方向为人工智能, 神经网络, 智能 控制理论与方法, 模式识别. E-mail: cysun@seu.edu.cn (**SUN Chang-Yin** Professor at the School of Automation, Southeast Uni-

versity. His research interest covers artificial intelligence, neural networks,

theory and design of intelligent control systems, and pattern recognition.)



**王士同** 江南大学数字媒体学院教授. 主要研究方向为人工智能,模式识别,数 据挖掘,神经网络,模糊系统,医学图像 处理和生物信息学.

E-mail: wxwangst@yahoo.com.cn

(WANG Shi-Tong Professor at the School of Digital Media, Jiangnan University. His research interest covers ar-

tificial intelligence, pattern recognition, data mining, neural networks, fuzzy system, medical image processing, and bioinformatics.)