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Inverse Kinematic Solution for Robot Manipulator Based

on Electromagnetism-like and Modified DFP Algorithms

YIN Feng1 WANG Yao-Nan1 WEI Shu-Ning1

Abstract A new method for computing numerical solutions to the inverse kinematics problem of robotic manipulators is developed
in this paper. With the joint limitations, the electromagnetism-like method (EM) utilizes an attraction-repulsion mechanism to move
the sample points towards the optimum solution rapidly. Based on this approximate solution given by EM, a modified Davidon-
Fletcher-Powell (DFP) algorithm is developed to solve the problem at the desired precision. Unlike the traditional algorithms, this
modified DFP (MDFP) algorithm randomly chooses the search step size between 0 and 1. Hence, the computational complexity is
greatly reduced. The experimental results based on ten general test functions and PUMA 560 robot show that this new near-real
time hybrid method can produce best performance.
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The inverse kinematics (IK) problem for a serial-chain
manipulator is to find the values of the joint positions given
the position and orientation of the end-effector. The prob-
lem is important for robot trajectory planning, motion con-
trol, and workspace analysis.

The problem solving methods are generally divided
into closed-form solution methods and numerical methods.
Closed-form solution methods, including algebraic and ge-
ometric methods[1−2], are desirable because they are faster
and easily identify all possible solutions. The major disad-
vantage of closed-form solutions is that they are not gen-
eral, but robot dependent. The most effective methods for
finding closed-form solutions are Ad Hoc techniques that
take advantage of particular geometric features of specific
mechanisms. So, these methods are available only for cer-
tain classes of industrial manipulators with simplified struc-
tures.

Contrarily, numerical methods are not robot dependent,
so they can be applied to any kinematic structure. Ragha-
van et al.[3] used dialytic elimination to reduce the IK prob-
lem of a general six-revolute serial-chain manipulator to a
polynomial of degree 16 and find all possible solutions. The
roots provide solutions for one of the joint variables, while
the other variables are computed by solving linear systems.
Manocha et al.[4] improved the numerical properties of this
technique by reformulating the problem as a generalized
eigenvalue problem. Husty et al.[5] made use of classical
multidimensional geometry to structure the IK problem
and to use the geometric information before starting the
elimination process. Then, the 6R-chain was broken up in
the middle to form two open 3R-chains and the 16 solu-
tions of the inverse kinematics were obtained. Qiao′s re-
cent work[6] showed that homogeneous transform matrix in
terms of double quaternion could lead to double kinematic
equations of 6R robots; a 16th degree univariate polynomial
was yielded from the resultant matrix via linear algebra
and Dixon resultant formulation. Such methods, however,
appear to be not suitable for solving the high degree of
freedom (DOF) problem, as the computational complexity
of these methods are highly dependent on the number of
the objective equations. In addition, these methods may
produce extraneous roots in solving some joint variables.
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Furthermore, a number of different iterative meth-
ods were employed to solve the IK problem. Essen-
tially, these methods make use of the Newton Raphson
scheme[7−8], modified predictor-corrector algorithm[9], sep-
aration of variable method[10] or adopt various optimiza-
tion algorithms in order to solve an equivalent minimiza-
tion problem[11]. Instead of solving directly, most of them
used gradient-based nonlinear programming algorithms to
solve the equivalent minimization problem. In general,
since the inverse Jacobian matrix was not used, these meth-
ods were numerically more stable. However, most of them
converge to a single solution based on an initial guess, so
the quality of that guess greatly impacts the convergence
time. The Cyclic-coordinate descent (CCD) method de-

veloped by Wang et al.[11] is an iterative heuristic search
method and its initial approximation of the solution vector
can be arbitrary. However, due to the heuristic nature of
this method, the rate of convergence is highly dependent
on the structure of the manipulator.

Recently, a few attempts were made to apply artificial
neural network (ANN)[12−14] for prediction of inverse kine-
matic solutions. Essentially, ANN approximates inverse
kinematics relations of the robot in order to map the Carte-
sian configuration into corresponding joint angles. To ob-
tain better learning performance, a large number of train-
ing patterns need to be given. However, generation of such
large data set is very difficult in practice for a robot sit-
uated in a cluttered workspace. Furthermore, the train-
ing data obtained from derived inverse kinematic equa-
tions may contain mapping error due to nonlinear map-
ping between joint angle coordinates and Cartesian coordi-
nates leading to inaccuracies in predicted inverse kinematic
solutions[15]. In addition, certain hybrid techniques made
use of ANN along with expert system[16], fuzzy logic[17],
and genetic algorithm[18] for obtaining inverse kinematic
solutions. Though these intelligence approaches can easily
provide inverse kinematic solutions for two or three DOF
planar robots, these methods demanded for high perfor-
mance computing systems and complex computer program-
ming for obtaining the solutions of more DOF robots[15].

In this paper, a novel hybrid algorithm based on
electromagnetism-like method (EM)[19] and modified
Davidon-Fletcher-Powell (MDFP) was developed to solve
the IK problem. EM had been tested on available test
problems in [19], and it showed that EM can converge to
the optimal solution in equations evaluations of variable



No. 1 YIN Feng et al.: Inverse Kinematic Solution for Robot Manipulator Based on · · · 75

dimension less than 30 without any first or second order
derivative information. A theoretical study of EM analy-
sis for convergence to the optimal solution was presented
in [20]. Recently, EM had been applied to solve vari-
ous optimization problems successfully, such as scheduling
optimization[21], multi-objective optimization[22], and NP
optimizations problems[23] and so on. However, at present,
there is very little research which uses EM to solve IK prob-
lems, and almost no papers can be found in this area in
public. As we know, the IK problem can be transformed
into an equivalent minimization problem[7−8, 11]. As the
number of joints of most robot manipulators are much less
than 30, the equivalent minimization problem belongs a
low-dimensional optimization problem. According to con-
clusions in [19], this problem appears to be easily resolved
by EM theoretically. Moreover, EM can be easily combined
with other optimization methods. Thus, a hybrid approach
that made use of EM and MDFP are proposed to resolve
the IK problem in this paper. It first used EM to rapidly
find a feasible point that is near to the true solution and
then used the MDFP to obtain a solution at the desired
degree of precision. Due to exploiting the strength of two
methods, the hybrid method is more efficient and precise.

The rest of paper is organized as follows. The formu-
lation of the problem and the objective function are pre-
sented in Section 1. Section 2 briefly introduced EM and a
numerical example using EM to solve IK problem is given.
In Section 3, an MDFP algorithm is developed and perfor-
mance evaluation of the hybrid approach is shown through
10 general test functions. Further, a numerical example for
solving the IK problem for the PUMA 560 robot is given.
Finally, discussions and conclusions are given in Section 4.

1 Problem formulation

As shown in Fig. 1, the desired position vector and orien-
tation matrix of a manipulator end-effector are denoted by:
PPP d and [RRRd] = [ddd1, ddd2, ddd3], where dddj (j = 1, 2, 3) are unit
vectors along the xd, yd, zd axes. Ph is the current position
vector of the end-effector. The current orientation matrix
is defined by: [Rh] = [hhh1,hhh2,hhh3], where hhhj (j = 1, 2, 3) are
unit vectors along the xh, yh, zh axes and the joint variables
are denoted by the n× 1 vector, θθθ = [θ1, θ2, · · · , θn]T.

Fig. 1 The current and desired end-effector configurations

Therefore, the errors between the current and the de-
sired locations of the end-effector can be described by the

following functions[11]:
Position error:

∆p(θ) = ‖PPP d −PPP h(θ)‖ (1)

Orientation error:

∆o(θ) =

3∑
j=1

(dj · hj (θ)− 1)2 (2)

The total error:

e(θ) = ∆p(θ) + ∆o(θ) (3)

where (·) denotes the vector dot product. Now, the in-
verse kinematics problem is to find a solution θ∗, such that
e (θ∗) ≤ ε (ε → 0). This problem can be transformed into
the following equivalent minimization problem:

min e(θ) s.t. θ ∈ Rn|lk ≤ θk ≤ uk, k = 1, 2, · · · , n (4)

where lk and uk are the lower and upper bounds of the i-th
joint variable, respectively.

2 Review of EM

EM is a new stochastic search method similar to genetic
algorithm (GA)[19]. To solve the problem in (4), the general
scheme of EM is given by following procedure:

Initialize;
While termination criteria are not satisfied do;

Local search;
Calculation of charge and total force vector;
Movement according to the total force;

End while

2.1 Initialization

The procedure initialization is used to sample m points,
{θ1, · · · , θ

m}, randomly from the feasible domain of the
joint variables, where θi = [θi

1, · · · , θi
n] (i = 1, · · · , m). The

procedure of uniform sampling can be determined by

θi
k = lk + rand · (uk − lk), k = 1, 2, · · · , n (5)

The procedure ends with m points identified, and the
point that has the best function value is stored in θbest.

2.2 Local search

The local search procedure is used to gather the local
information and improve the current solutions. It can be
applied to one or many points for local refinement at each
iteration. The selection of these two procedures, does not
affect the convergence result.

2.3 Calculation of charge and total force vector

The charges of the points are calculated according to
their objective function values, and the charge of each point
is not constant and changes from iteration to iteration. The
charge of the i-th point, qi, is evaluated as

qi = exp


−n

(e(θi)− e(θbest))
m∑

k=1

(e(θk)− e(θbest))


 , i = 1, 2, · · · , m (6)

In this way, the points that have better objective val-
ues possess higher charges. Notice that, unlike electrical
charges, no signs are attached to the charge of an individ-
ual point in (6). Instead, the direction of a particular force
between two points is decided after comparing their objec-
tive function values. Hence, the total force FFF i exerted on
point i is computed by the following equation:
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FFF i =





m∑

j 6=i

(θj − θi)
qjqi

‖ θj − θi ‖2 , if e(θj) < e(θi)

m∑

j 6=i

(θi − θj)
qjqi

‖ θj − θi ‖2 , others

(7)

According to (7), the point that has a better objective
function value attracts the other one. Contrarily, the point
with worse objective function value repels the other. Since
θbest has the minimum objective function value, it acts as
an absolute point of attraction. Then, it attracts all other
points in the population to better region. The procedure
of calculation for total force vector is as following:

for i = 1 to m do

qi = exp


−n e(θi)−e(θbest)

m∑
k=1

(e(θk)−e(θbest))


 , FFF i = 0;

end for
for i = 1 to m do

for j = 1 to m do
if i 6= j then

F i
j = (θj − θi)

qiqj

‖xj − xi‖2 ;

if f(xj) < f(xi) then
F i = F i + F i

j {Attraction};
else

F i = F i − F i
j {Repulsion};

end if
end if

end for
end for

2.4 Movement according to the total force

After evaluating the total force vector FFF i, the point i is
moved in the direction of the force by a random step length
in (8). Here, the random step length λ is assumed to be
uniformly distributed between 0 and 1.

θi = θi + λ
FFF i

‖FFF i‖RRRNG, i = 1, 2, · · · , m (8)

In (8), RNG is a vector whose components denote the
allowed feasible movement toward the upper bound uk or
the lower bound lk of the joint variables. The procedure is
as following:

for i = 1 to m do
if i 6= best then

λ = U(0, 1);

FFF i =
FFF i

‖FFF i‖ ;

for k = 1 to n do
if F i

k > 0 then
xi

k = xi
k + λF i

k(uk − xi
k);

else
xi

k = xi
k + λF i

k(xi
k − lk);

end if
end for

end if
end for
After finishing the above procedures, the positions of

points are updated and we have finished one iteration cal-
culation of EM. Take Fig. 2 for an example. There are three
particles and their own objective values are 15, 10 and 5, re-
spectively. Because Particle 1 is worse than Particle 3 while
Particle 2 is better than Particle 3, Particle 1 represents a

repulsion force which is FFF 13 and Particle 2 encourages Par-
ticle 3 that moves to the neighborhood region of Particle 2.
Consequently, Particle 3 moves along with the total force
FFF .

Fig. 2 An example of attract-repulse effect on three particles

2.5 An inverse kinematic example of a general 3R
manipulator

According to test results in [19], in general, 25 iterations
per dimension are satisfactory for converging to the opti-
mum point for moderately difficult functions. Therefore,
an approximate solution vector which is near the true so-
lution to the inverse kinematic problem of n-DOF robot
manipulator can be obtained in finite iterations (≤ 25n).
An example for solving the inverse kinematics problem of a
general 3R manipulator has been used, as shown in Fig. 3.
This example demonstrates a typical run of EM by present-
ing the positions of all particles in iterations.

Fig. 3 A kinematic scheme for a general 3R manipulator

For this example, the Denavit-Hartenberg parameters
are shown in Table 1. The joint limitations are: θ ∈ [−π

2
,

π]. The desired configuration is: Pd = [0.0084, 2.2992,
1.2962]T, Rd = [d1, d2, d3], where d1 = [−0.6863, −0.5636,
0.4598]T, d2 = [0.4415, −0.8251, −0.3525]T, and d3 =
[0.578, −0.0389, 0.815]T, which corresponds to an exact
solution of θθθ = [θ1, θ2, θ3] = [60◦, 70◦, 80◦]. In this example
we have selected the sample point m to be 20.

In the following figures, “∗” represents the location of
true solution and “♦” shows the current best point. Fig. 4
shows the location of particles when the algorithm is started
by randomly sampling points from the feasible region. The
points in the population move towards the region around
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Table 1 The link parameters of the 3R manipulator

Joint Link length a (m) Twist angle α (◦) Offset length d (m) Rotation angle (◦)

1 2.4354 27.0245 0.2513 θ1

2 1.0826 15.7664 0.1509 θ2

3 0.9748 0 0 θ3

the current best point. Fig. 5 shows a new best point θbest

is observed and the points start to converge towards the
new best point. Finally, the optimum solution is located as
shown in Fig. 6. The detailed discussion about EM is given
in Section 3.

Fig. 4 The random initial positions of the particles

Fig. 5 Points start to attract and repel each other

Fig. 6 One of the points finds the true solution

3 Hybrid methods using EM and mod-
ified DFP for solving the IK problem

Our experience shows that applying only a few iterations
of EM will bring at least one sample point into the neigh-
borhood of the true solution. In general, four results are
usually obtained by EM:

Case 1. A true solution is obtained within a small num-
ber of iterations;

Case 2. A true solution is obtained within a desired
number of iterations;

Case 3. A true solution is obtained when the number
of iterations is large enough;

Case 4. An approximate solution close to the true so-
lution is obtained within a desired number of iterations.

Without loss of generality, we will consider the most
general Case 4. For Case 4, although the result can be
improved by increasing the number of iterations, this may
increase the running time. Notice that an approximate so-
lution near to the true solution can be obtained rapidly by
EM. On the other hand, when the solution vector is near
the true solution, the DFP method is generally expected to
give a rapid convergence rate[24]. Therefore, if we combine
the above two optimization methods, this hybrid approach
is more efficient and precise.

The DFP method finds the solution to the secant equa-
tion that is closest to the current estimate and satisfies
the curvature condition (see below). It was the first quasi-
Newton method which generalizes the secant method to
a multidimensional problem. This update maintains the
symmetry and positive definiteness of the Hessian matrix.
Given a function f(x), its gradient ∇f , and positive defi-
nite Hessian matrix B, the Taylor series is:

f(xk + sk) = f(xk) +∇f(xk)Tsk +
1

2
sT

k Bsk (9)

And the Taylor series of the gradient itself is:

∇f(xk + sk) = ∇f(xk) + Bsk (10)

which is used to update B. The DFP method finds a solu-
tion that is symmetric, positive, and closest to the current
approximation of Bk:

Bk+1 = (I − γkyksT
k )Bk(I − γkskyT

k ) + γkykyT
k (11)

where

yk = ∇f(xk + sk)−∇f(xk), γk =
1

yT
k sk

(12)

And Bk is a symmetric and positive definite matrix. The
corresponding update to the inverse Hessian approximation
Hk = B−1

k is given by:

Hk+1 = Hk − HkykyT
k Hk

yT
k Hkyk

+
sksT

k

yT
k sk

(13)

B is assumed to be positive definite and the vectors sT
k and

y must satisfy the curvature condition:

sT
k yk = sT

k Bsk > 0 (14)
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The DFP method is quite effective. However, due to the
highly nonlinear nature of the manipulator kinematic equa-
tions, the gradient vector of the objective function and the
optimum step size in the search direction are difficult to
obtain in DFP. To solve these two problems, the analytical
form of the gradient vector and an approximation to the
optimum search step size had been developed in [11]. How-
ever, since the Jacobian matrix is used in [11], the compu-
tational process is more complex. To reduce the computa-
tional complexity, a modified DFP algorithm is developed
in this paper. Unlike the traditional DFP algorithm, this
modified DFP algorithm randomly chooses the search step
size between 0 and 1. Thus, the computational complex-
ity is greatly reduced, and more importantly, this method
is not only computationally efficient but also numerically
stable. In order to ensure that the modified DFP algorithm
converges to the optimum solution, the following assump-
tions are made.

Assumption 1. The pre-specified initial value of the
solution is close to the optimum solution and the search
procedure is restricted to a small area near to the true so-
lution in modified algorithm.

Assumption 2. The optimum search direction is known
per iteration.

From the foregoing discussions, the initial guess value
can be given by EM. The search direction in Assumption 2
can be obtained using an approximated Hessian matrix and
the gradient vector of the objective function[24]. Based on
the above assumptions, the true solution can be approached
gradually using a small random search step size between 0
and 1. Since the search domain is small, the optimum so-
lution can be efficiently calculated. The complete solution
procedure of MDFP algorithm is summarized below:

Step 1. Given the initial value x(1) ∈ Rn and termina-
tion criteria ε > 0;

Step 2. H1 = In (unit matrix);
Step 3. Given a random search step size: λ=rand (0, 1);

Step 4. Calculate the gradient at x(1) : g1 = ∇f(x(1));
Step 5. k = 1;
Step 6. Calculate the search direction: d(k) = −Hkgk;
Step 7. err = ‖gk‖;
Step 8. While err ≥ ε do;
Step 9. x(k+1) = x(k) + λd(k);
Step 10. gk+1 = ∇f(x(k+1));

Step 11. q(k) = gk+1 − gk;
Step 12. pk = xk+1 − xk;

Step 13. Hk+1 = Hk + p(k)p(k)T

p
(k)Tq(k) − Hkq(k)q(k)THk

q(k)THkq(k) ;

Step 14. dk+1 = −Hk+1gk+1;
Step 15. err = ‖gk+1‖;
Step 16. k = k + 1;
Step 17. End while
Lemma 1[24]. If the gradient gi 6= 0, the matrix Hi (Step

13 in MDFP algorithm) is symmetric positive definite.

Lemma 2[24]. For a symmetric positive definite matrix
Hi, the search direction vector:

ddd(k) = −Hk∇f(x(k)) (15)

is a descent direction. It shows that a small step along

ddd(k) can guarantee that the objective function is reduced.
Thus, the global optimum solution can be approached by
an appropriate small step in the direction of descent with

limited iteration.

3.1 Testing the convergence properties of EM-
MDFP algorithm

In order to examine the basic convergence proper-
ties of EM-MDFP algorithm, general 10 test functions
taken from the web site, http://www-optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedarfiles/go.htm, are cal-
culated by EM-MDFP method.

First, we make use of EM to obtain an approximate so-
lution near to the true solution. Though better results can
be achieved by EM when a large number of iterations and
sample points (m) are used, we have selected a small num-
ber of sample points (m) and maximum iterations aim to
reduce the running time and examine whether the MDPF
algorithm can converge to the optimum solution when the
quality of initial value given by EM is not good enough. In
this paper, we have selected the sample points (m) to be 10
and the maximum iterations to be 30, except function Trid
and Michalewics (5). The number of 30 iterations seems
to be not large enough to adequately explore a feasible
solution for these two problems. Then, we have selected
the maximum iterations to be 100 to calculate function
Trid and Michalewics (5). The running time, approxi-
mate solution (x(1)) and the best objective function values
(Best f (x)) are recorded. The testing procedure continu-
ously runs 10 times. The average running time (Avg. time)
and objective function values (Avg. f(x)) are also reported.
Secondly, the MDFP method starts from the initial point
given by EM to search the optimum solution. The stopping
criterion is set to be 10−6. For the comparison, number of
iterations, running time, and objective function, including
their average values, are recorded.

All the computations are conducted on a Celeron (R)
CPU 2.80 GHz PC. The algorithm is coded in Matlab 6.5.
Table 2 shows that the test results of the test function
booth. The known optimum solution and minimum value
of test function booth are, respectively, x∗ = (1, 3) and
f(x∗) = 0.0. In this example, the search step size λ is as-
sumed to be uniformly distributed between 0 and 1. More
functions test results are given in Table 3 and the process
of testing is similar to Table 2. Without loss of generality,
the search step size λ is randomly set to be a small pos-
itive value between 0 and 1. Our results show that EM
is able to approximate the optimum. Moreover, although
the search step size λ is not optimal, the convergence is
extremely rapid and the optimum solutions in all cases can
be obtained by MDFP. Function Michalewics in Table 3
appears to be a special case of taking more iterations by
MDFP. It is well known that the global optimum of func-
tion Michalewics is hard to be obtained. To get a better
convergence property, a given optimal search step size is
used instead of choosing randomly in MDFP. The global
optimum is obtained successfully and the running times of
MDFP are, respectively, only about 0.08 and 0.6 s. No-
tice that the running time is inevitable to be disturbed by
other programs running in PC, the actual time consump-
tion of MDFP method is almost close to 0. This is also
why some iterative procedures with less number of itera-
tions need more running time in Tables 2 and 3.

3.2 Inverse kinematic problems of PUMA 560

The structure of the manipulator used in this example is
based on the PUMA 560 robot. This robot is chosen beca-
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Table 2 Results of EM-MDFP for test function booth

Solution EM MDFP

number x(1) f(x
(1)

) Time (s) f(x∗) Time (s) Steps λ

1 (1.3843, 2.5867) 0.3219 0.3130 0.0000 0.0780 130 0.1

2 (1.2745, 2.8634) 0.1701 0.3130 0.0000 0.0160 70 0.2

3 (1.2524, 2.7525) 0.1251 0.3130 0.0000 0.0160 42 0.3

4 (1.0923, 2.9118) 0.0164 0.3430 0.0000 0.0150 28 0.4

5 (1.1791, 2.8806) 0.0606 0.3280 0.0000 0.0320 24 0.5

6 (1.1484, 2.7962) 0.0758 0.3440 0.0000 0.0000 18 0.6

7 (0.9709, 3.1807) 0.1254 0.3120 0.0000 0.0000 15 0.7

8 (0.6474, 3.4850) 0.4297 0.3130 0.0000 0.0160 12 0.8

9 (1.4567, 2.6599) 0.3786 0.3280 0.0000 0.0310 9 0.9

10 (1.1880, 2.9396) 0.1042 0.3440 0.0000 0.0150 5 1.0

Avg. 0.1808 0.3250 0.0000 0.0219 35

Table 3 Results of EM-MDFP for all test functions

Function Known EM MDFP

name optimum Best f(x) Avg.f(x) Avg.time (s) Avg.f(x) Avg.time (s) Avg.steps λ

Beale 0.0 0.0121 0.0650 0.3141 0.0000 0.0108 52 random

Hump 0.0 0.0000 0.0403 0.5311 0.0000 0.0281 34 random

Matyas 0.0 0.0150 0.1917 0.3263 0.0000 0.0295 60 random

Sum squares (5) 0.0 0.3935 1.3336 0.3281 0.0000 0.0138 23 random

Zakharov (2) 0.0 0.0030 0.0686 0.3166 0.0000 0.0266 26 random

Levy (2) 0.0 0.0004 0.1783 0.3391 0.0000 0.0231 22 random

Trid (6) −50.0 −47.2770 −43.7232 0.9302 −50.00 0.0201 28 random

Michalewics (2) −1.8013 −1.8003 −1.7571 0.3469 −1.8013 0.0876 289 0.05

Michalewics (5) −4.6876 −4.2910 −3.7141 1.0453 −4.6863 0.5967 2 776 0.008

use a closed-form solution can be obtained, which can be
used for checking the accuracy of the numerical solution.
The link parameters and the joint limits of this robot are
listed in Table 4.

To handle the IK problem of this robot with MDFP
method, the search direction must be calculated firstly,
which can be obtained by using an approximated Hessian
matrix and the gradient vector of the objective function.
This Hessian matrix can be computed using the formula
(Step 13 in MDFP algorithm). For (3), the elements of the

gradient vector are given by following equation[11]:
If the joint is a translational joint, then

∂e(θ)

∂θi
= 2z i · (Ph(θ)−Pd ) (16)

If the joint is a rotational joint, then

∂e(θ)

∂θi
= 2z i ·

{
[Pd −Ph ]×P ih +

3∑
j=1

(d j · hj − 1)(hj × d j)
}

(17)

Given θ, zi, Ph , and hj (j = 1, 2, 3) can be recursively
computed by using the forward recursion formulas in [25].
Consequently, the search direction vector can be efficiently
evaluated.

Example 1. The convergence criterion of EM in this
example is defined by ε = 0.1 instead of the maximum it-
erations. The convergence of MDFP method is defined by

ε = 10−k, where k varies from 1 to 8. For each value of
k, 10 problems were given to EM-MDFP method to solve.
Both the initial and the desired configurations of the prob-
lems were randomly generated within the working space of
the robot. The average running times of the solved prob-
lems are plotted in Fig. 7. From this figure, the EM-MDFP
method is able to solve all of the given problems at the de-
sired precision. Moreover, even though the required degree
of precision is high, the EM-MDFP is also computation-
ally efficient. It should be noted that a C implementation
would be much faster than Matlab. Then, we have reasons
to believe that the EM-MDFP is a near real time algorithm
if the evaluations are carried out in C/C ++ environment.

Fig. 7 Average execution time for Example 1
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Example 2. This example is used to demonstrate that
the EM-MDFP method has the potential of finding all of
the multiple solutions. As we know that the PUMA 560
has at most eight solutions when there are no joint lim-
its. In order to find all solutions, the joint limitations
were released in this example. The desired configuration of
the end effector was given by: Pd = [0.732, 0.386, 0.682]T,
d1 = [−0.727, 0.646, 0.233]T, d2 = [0.317, 0.014, 0.948]T,
and d3 = [0.610, 0.763,−0.215]T, which corresponds to an
exact solution of θθθ = [15◦, 25◦, 35◦, 45◦, 55◦, 65◦]T. The
convergence criteria of EM and MDFP are, respectively,
equal to 0.1 and 10−6. And the number of sample points
in EM are 10. For convenience, the algorithm had been
modified to run iteratively. This process is very easy to
implement by using a loop command. Given a maximum
number of evaluations, the program will run continuously
and the results of each iteration are recorded. In this ex-
ample, all eight solutions were found successfully after 75
iterations, as shown in Table 5.

The following plots (Figs. 8∼ 11) summarize the per-
formance of EM-MDFP algorithm with different search
steps to solve the inverse kinematics of PUMA robot. In

this example, four representative search step sizes, λ =
0.01, 0.1, 0.5, 1.2, respectively, are chosen to represent the
convergence properties of EM-MDFP. Our results show
that the EM-MDFP is able to approximate the optimum
solution at the desired precision in all cases. As seen in the
plots, the error plot is smoother for MDFP with smaller
search step size. But the convergence properties of MDFP
with smaller search size, in general, are worse than the one
with large search step size. However, if we set the search
step size λ > 2, the MDFP do not converge. The perfor-
mance of the MDFP developed in this paper is very similar
to the performance of the steepest descent method. Simi-
larly, the parameter λ in MDFP can be called as learning
speed in this paper.

4 Discussions and conclusions

In this paper, we have developed a novel hybrid algo-
rithm, called EM-MDFP, which is a powerful and easy al-
gorithm for solving the inverse kinematics problem of robot
manipulators. The major advantages of EM are that its
complexity is independent on the characteristics of the ki-

Table 4 The link parameters of the PUMA 560 robot

Joint Link length (m) Twist angle (◦) Offset length (m) Joint limitations (◦)

1 0 −90 0.6604 [−160, 160]

2 0.4320 0 0.2000 [−225, 45]

3 0 90 −0.0505 [−45, 225]

4 0 −90 0.4320 [−110, 170]

5 0 90 0.0 [−100, 100]

6 0 0 0.0565 [−266, 266]

Table 5 The multiple solutions of Example 2

Solution number θ1 (◦) θ2 (◦) θ3 (◦) θ4 (◦) θ5 (◦) θ6 (◦)

1 14.9981 25.0043 34.9991 45.0663 54.9701 65.0246

2 14.9943 25.0045 35.0040 −134.8443 −54.9786 −115.0963

3 14.9991 −29.9968 144.9999 103.3375 36.5176 −11.5898

4 14.9989 −29.9990 144.9972 −76.6554 −36.5255 168.3681

5 −142.5264 −149.4014 34.3634 130.9456 −15.9070 148.1551

6 −142.9029 −149.9997 35.0004 −49.5765 18.4455 −31.2045

7 −142.9026 155.0002 145.0002 20.0620 −44.5842 −93.8781

8 −142.9034 155.0008 144.9990 −159.9225 44.5867 86.1114

Fig. 8 Performance of the EM-MDFP when λ = 0.01 Fig. 9 Performance of the EM-MDFP when λ = 0.1
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Fig. 10 Performance of the EM-MDFP when λ = 0.5

Fig. 11 Performance of the EM-MDFP when λ = 1.2

nematic equations involving dimensionality and the degree
of nonlinearity, and it is not sensitive to the initial and sin-
gular configurations of the manipulator. Without using the
first or second order information, EM is able to converge
rapidly to an approximate solution. Starting from the ini-
tial point given by EM, a modified variable metric method
denoted by MDFP is used to search the optimum solu-
tion at the desired precision. Since the size step in search
can be randomly chosen, the computational complexity is
greatly reduced. The experimental results show that this
hybrid method is not only numerically stable but also com-
putationally efficient. According to the test results, some
additional comments are:

1) EM is efficient enough to obtain IK solutions inde-
pendent of robot geometry and the number of degrees of
freedom. However, when the required degree of precision is
high, it appears to be more suitable for off-line calculation,
rather than on-line calculation;

2) Since the EM-MDFP fully exploits the strength of
both the EM and the MDFP method, it is computation-
ally efficient and very suitable for on-line calculation;

3) Though the search step sizes can be randomly chosen
in MDFP, it should be noted that performance for different
step size varies, especially for some difficult functions. In
order to get a better convergence performance for a particu-
lar function, a pre-specified optimal search step size is used,
which is easily determined by using experimental method.

References

1 Manseur R, Doty K L. Structural kinematics of 6-revolute-
axis robot manipulators. Mechanism and Machine Theory,
1996, 31(5): 647−657

2 Raghavan M, Roth B. Inverse kinematics of the general 6R
manipulator and related linkages. Journal of Mechanical De-
sign, 1993, 115(3): 502−508

3 Raghavan M, Roth B. Kinematic analysis of the 6R manip-
ulator of general geometry. In: Proceedings of the 5th Inter-
national Symposium on Robotics Research. Tokyo, Japan:
MIT Press, 1991. 263-269

4 Manocha D, Canny J F. Efficient inverse kinematics for gen-
eral 6R manipulators. IEEE Transaction on Robotics and
Automation, 1994, 10(5): 648−657

5 Husty M L, Pfurner M, Schrocker H P. A new and efficient
algorithm for the inverse kinematics of a general serial 6R
manipulator. Mechanism and Machine Theory, 2007, 42(1):
66−81

6 Qiao S G, Liao Q Z, Wei S M, Su H J. Inverse kinematic anal-
ysis of the general 6R serial manipulators based on double
quaternions. Mechanism and Machine Theory, 2010, 45(2):
193−199

7 Manseur R, Doty K L. Fast inverse kinematics of 5-revolute-
axis robot manipulators. Mechanism and Machine Theory,
1992, 27(5): 587−597

8 Thomopoulos S C A, Tam R Y J. An iterative solution to
the inverse kinematics of robotic manipulators. Mechanism
and Machine Theory, 1991, 26(4): 359−373

9 Cheng H, Gupta K C. A study of robot inverse kinematics
based upon the solution of differential equations. Journal of
Robotic Systems, 2007, 8(2): 159−175

10 Chen I M, Yang G L, Kang I G. Numerical inverse kinemat-
ics for modular reconfigurable robots. Journal of Robotic
Systems, 1999, 16(4): 213−225

11 Wang L C T, Chen C C. A combined optimization method
for solving the inverse kinematics problem of mechanical ma-
nipulators. IEEE Transactions on Robotics and Automation,
1991, 7(4): 489−499

12 Hasan A T, Hamouda A M S, Ismail N, Al-Assadi H M A A.
An adaptive-learning algorithm to solve the inverse kinemat-
ics problem of a 6 DOF serial robot. Advances in Engineering
Software, 2006, 37(7): 432−438

13 AI-Faiz M Z. Inverse kinematics solution for robot manipu-
lator based on neural network. MASAUM Journal of Basic
and Applied Sciences, 2009, 1(2): 147−154

14 Koker R, Oz C, Cakar T, Ekiz H. A study of neural net-
work based inverse kinematics solution for a three-joint
robot. Robotics and Autonomous Systems, 2004, 49(3−4):
227−234

15 Chiddarwar S S, Babu N R. Comparison of RBF and MLP
neural networks to solve inverse kinematic problem for 6R
serial robot by a fusion approach. Engineering Applications
of Artificial Intelligence, 2010, 23(7): 1083−1092

16 Oyama E, Agah A, MacDorman K F, Maeda T, Tachi S. A
modular neural network architecture for inverse kinematics
model learning. Neurocomputing, 2001, 38−40: 797−805

17 Alavandar S, Nigam M J. Neuro-fuzzy based approach for
inverse kinematics solution of industrial robot manipula-
tors. International Journal of Computers, Communications
& Control, 2008, 3(3): 224−234



82 ACTA AUTOMATICA SINICA Vol. 37

18 Karlra P, Prakash N R. A neuro-genetic algorithm approach
for solving the inverse kinematics of robotic manipulators.
In: Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics. Washington D.C., USA:
IEEE, 2003. 1979−1984

19 Birbil S I, Fang S C. An electromagnetism-like mechanism
for global optimization. Journal of Global Optimization,
2003, 25(3): 263−282

20 Birbil S I, Fang S C, Sheu R L. On the convergence of a
population-based global optimization algorithm. Journal of
Global Optimization, 2004, 30(2−3): 301−318

21 Yurtkuran A, Emel E. A new hybrid electromagnetism-like
algorithm for capacitated vehicle routing problems. Expert
Systems with Applications, 2010, 37(4): 3427−3433

22 Tsou C S, Kao C H. An electromagnetism-like meta-heuristic
for multi-objective optimization. In: Proceedings of the
IEEE Congress on Evolutionary Computation. Vancouver,
Canada: IEEE, 2006.1172−1178

23 Wu P, Yang K J, Fang H C. A revised EM-like algorithm +K-
OPT method for solving the traveling salesman problem. In:
Proceedings of the 1st International Conference on Innova-
tive Computing, Information and Control. Beijing, China:
IEEE, 2006. 546−549

24 Chen Bao-Lin. Optimization Theory and Algorithms (Sec-
ond Edition). Beijing, China: Tsinghua University Press,
2005. 375−376 (in Chinese)

25 Wang L, Ravani B. Recursive computations of kinematic and
dynamic equations for mechanical manipulators. IEEE Jour-
nal of Robotics and Automation, 1985, 1(3): 124−131

YIN Feng Ph.D. candidate at the Col-
lege of Electrical and Information Engi-
neering, Hunan University. He received his
master degree from Hunan University in
2008. His research interest covers intelli-
gent control and robotics. Corresponding
author of this paper.
E-mail: yinfeng83@126.com

WANG Yao-Nan Professor at the Col-
lege of Electrical and Information Engi-
neering, Hunan University. He received
his bachelor degree in computer engineer-
ing from East China Technology Institute
(ECTI) in 1981, and master and Ph.D. de-
grees in control engineering from Hunan
University in 1990 and 1994, respectively.
From 1981 to 1994, he was with ECTI.
Since 1995, he has been a professor at the
College of Electrical and Information En-

gineering, Hunan University. His research interest covers indus-
trial process control, intelligent control theory and applications,
and image processing. E-mail: yaonan@hnu.cn

WEI Shu-Ning Ph.D. candidate at the
College of Electrical and Information Engi-
neering, Hunan University. Her research
interest covers robot control technology,
neural network control, and machine learn-
ing. E-mail: weishuning@sina.com


