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Convex Optimization Algorithms for Cooperative

Localization in Autonomous Underwater Vehicles
LIU Ming-Yong1 LI Wen-Bai1 PEI Xuan1

Abstract In this paper, a cooperative localization algorithm for autonomous underwater vehicles (AUVs) is proposed. A “parallel”
model is adopted to describe the cooperative localization problem instead of the traditional “leader-follower” model, and a linear
programming associated with convex optimization method is used to deal with the problem. After an unknown-but-bounded model
for sensor noise is assumed, bearing and range measurements can be modeled as linear constraints on the configuration space of the
AUVs. Merging these constraints induces a convex polyhedron representing the set of all configurations consistent with the sensor
measurements. Estimates for the uncertainty in the position of a single AUV or the relative positions of two or more nodes can
then be obtained by projecting this polyhedron onto appropriate subspaces of the configuration space. Two different optimization
algorithms are given to recover the uncertainty region according to the number of the AUVs. Simulation results are presented for a
typical localization example of the AUV formation. The results show that our positioning method offers a good localization accuracy,
although a small number of low-cost sensors are needed for each vehicle, and this validates that it is an economical and practical
positioning approach compared with the traditional approach.
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A fundamental capability for autonomous underwater
vehicles (AUVs) operations is localization, which is the abil-
ity of an AUV to estimate its position in the environment.
Within this field of research, there is a more recent and
narrower focus on cooperative localization for AUVs. How-
ever, the absence of GPS underwater makes navigation and
localization for AUVs a challenge. Without an external ref-
erence in the form of acoustic beacons at known positions,
the vehicles have to rely on proprioceptive information ob-
tained through a compass, a Doppler velocity logger (DVL)
or an inertial navigation system (INS). Independent of the
quality of the sensors used, the error in the position esti-
mate based on dead-reckoning information grows without
bound. Moreover, by surfacing the AUV, we can obtain a
position update through its GPS, but this is impossible or
undesirable for many applications. The use of static bea-
cons in the form of a long baseline (LBL) array limits the
operation area to a few square kilometers and requires a
substantial deployment effort before operations, especially
in deep water[1].

A traditional method to realize cooperative localization
for AUVs is the “leader-follower” model[2−4]. That is, the
leader vehicle is equipped with various navigation equip-
ment (DVL, INS, etc.) with high precision and reliability,
while the follower′s equipment has a relatively low accuracy.
Then, by using integrated navigation algorithms, real-time
localization results for each follower vehicle can be obtained
with high accuracy. However, these sophisticated equip-
ment is expensive, which cannot always be afforded in many
practical applications. Under such a motivation, we adopt
a “parallel” model to deal with the cooperative localization
problem. That is, each of the AUV is carried with the same
relatively low-accuracy navigation equipment, via employ-
ing sensor-fusion techniques, the exact location for each
AUV can be calculated through the acoustic sensor mea-
surements. Compared with the “leader-follower” method,
the advantages of our method are the small number of
low-cost sensors (only an acoustic modem and bearing and
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range sensors are considered) and the relatively high local-
ization accuracy of the AUV swarm. Therefore, it is more
economical and practical.

In recent years, linear and nonlinear programming and
convex optimization methods have been widely applied to
multirobot field to realize formation control, path track-
ing, and cooperative positioning for robot teams. Through
the graph-theoretic and convex optimization methods, Do-
herty et al.[5] proposed a method for estimating unknown
node positions in a robot team. Spletzer et al.[6−10] stud-
ied the task of repositioning a formation of robots to a
new shape while minimizing either the maximum distance
that any robot travels or the total distance traveled by
the formation. The optimal solutions here can be obtained
via exploring second-order cone programming techniques
and convex optimization methods. Furthermore, even in
the case of communication constraints, some multivehicle
path coordination problems can still be well solved via us-
ing mixed integer linear programming and nonlinear pro-
gramming methods[11−14]. This has great significance for
multi-AUV underwater navigation.

In this paper, linear programming and convex optimiza-
tion methods are used to solve the multi-AUV localization
problem. Consider the cooperative localization problem
of AUVs in R3 under an unknown-but-bounded model as-
sumption for sensor noise. As depth can be accurately mea-
sured with a pressure sensor, the AUV can use its depth and
the depth received from the communication and navigation
aid-AUV (CNA) to project the CNA′s position into a R2

plane, and thereby reducing the cooperative localization
from a 3-D to a 2-D problem[2−3]. Hence, the bearing and
range measurements can be modeled as linear constraints
on the configuration space of the AUVs in R2. Merging
these constraints induces a convex polyhedron represent-
ing the set of all configurations consistent with the sensor
measurements. Estimates for the uncertainty in the ab-
solute position of a single AUV or the relative positions
of two or more nodes can then be obtained by projecting
this polyhedron onto appropriate subspaces of the config-
uration space. However, recovering the exact projection,
which plays a core role in our approach, is rather hard. A
novel method is proposed to recover the exact projection
here. It is simpler and more efficient than the traditional



No. 5 LIU Ming-Yong et al.: Convex Optimization Algorithms for Cooperative Localization in · · · 705

methods, while the latter requires exponential time[6−7, 10].
The principal contributions of this paper are as fol-

lows: 1) The multi-AUV cooperative localization problem
is transformed into a linear programming problem with
constraints, and the mathematical model has a universal
applicability; 2) Two different optimization algorithms are
proposed to recover the uncertainty region of each AUV via
using convex optimization method. For different numbers
of AUVs, these algorithms have good convergence property
and positioning accuracy.

The paper is organized as follows. Section 1 generates
linear constraints of the AUV formation. Section 2 de-
scribes some preparatory work about projection and opti-
mization. Section 3 describes two different localization al-
gorithms via using convex optimization methods and com-
pares the computational complexities of them. Section 4
presents simulation results.

1 Generating linear constraints

The approach here relies upon modeling the bearing and
range measurements obtained by the AUVs as linear con-
straints on the configuration of the AUV team. This section
focuses on the transformation required to realize this. Let
xxxi,xxxj ∈ R2 represent the positions of AUV, i, j relative to
some common reference frame, where xxxi = (xi, yi) is the
component expression of the position vector. Again in a
slight abuse of notation, xxxi is also used to denote the i-th
AUV itself. Let each of the n AUVs be equipped with sen-
sors allowing it to measure bearing and possibly range to
another AUV with bounded error. Denote by αij and rij

the bearing and range measurements taken by xxxi to xxxj , re-
spectively. Furthermore, assume that each AUV is able to
infer its orientation θ with respect to a specified reference
direction with bounded error.

Note that bearing measurements are easy to translate
into linear constraints. Considering Fig. 1 (a), by assum-
ing bounded error in bearing measurements, α12 defines an
uncertainty sector formed by the rays [xxx1, α12 + ∆α1] and
[xxx1, α12−∆α1], where ∆α1 reflects the uncertainty in both
bearing (α12) and orientation (θ) measurements. By de-
noting αmax = α12 + ∆α1 and αmin = α12 −∆α1, then the
uncertainty region is constrained by the linear inequalities

(x2 − x1) sin αmin + (y1 − y2) cos αmin ≤ 0

(x1 − x2) sin αmax + (y2 − y1) cos αmax ≤ 0 (1)

For range measurements, the procedure seems a little
more complicated. Again, suppose that the true range mea-
surement can be bounded by rmin ≤ r12 ≤ rmax. Combin-
ing this with the bearing constraints results in an annular
sector of uncertainty U . Then, by choosing two linear con-
straints orthogonal to α12 and supporting the critical points

of U generates a new uncertainty region Û |U ⊂ Û (Û is a
trapezoidal area), as illustrated in Fig. 1 (b). According to
the geometric relationship in Fig. 1 (b), we have

(a) Bearing measurement (b) Range measurement

Fig. 1 Bearing and range measurements in R2

(x2 − x1) cos α12 + (y2 − y1) sin α12 − rmax ≤ 0

(x1 − x2) cos α12 + (y1 − y2) sin α12 − rmin ≤ 0 (2)

2 Projection and optimization

In this section, we will do some preparatory work. These
are theoretical basis to the localization approach here.

2.1 Generating projection

Let C ⊂ Rm×n denote the configuration space of the
AUVs and x̄xx = [xxx1, . . . ,xxxn] ∈ C denote the current con-
figuration of the ensemble. Here, m and n denote the di-
mension of these position vectors and the number of AUVs,
respectively. With these representations, the bearing and
range sensor measurements can then be modeled as linear
constraints on x̄xx, as described in the previous section. By
combining these constraints, a system of linear inequalities
is obtained

Ax̄xx ≤ bbb (3)

where A ∈ Rl×(m×n) represents the sensor constraints.
Equation (3) induces a convex polyhedron P ⊂ C on the
configuration space of the formation, which corresponds to
the set of all configurations consistent with the sensor mea-
surements.

The notion of the projection of the convex polyhedron P
is defined as

P = Π(P ) = {π(x̄xx)|x̄xx ∈ P} (4)

where the projective mapping has the form

πi(x̄xx) = xxxi

πij(x̄xx) = xxxi − xxxj (5)

which corresponds to the position of xxxi, and the relative
positions of xxxi and xxxj , respectively. Clearly, P ⊂ R2 is the
convex polygon related to P .

Generally, the notion of projection can be extended to
describe the process of projecting a region P onto a k-
dimensional subspace

π(x̄xx) = Dx̄xx (6)

where the projection matrix D maps the configuration vec-
tor x̄xx from Rm×n to Rk.

2.2 Geometric properties of PPP

The convex polyhedron P induced by (3) is called the

feasible region[15]. By adding a set of artificial variables,
(3) can be rewritten as

Ã¯̃xxx = bbb (7)

where ¯̃xxx = (xxx1, · · · ,xxxn,xxxn+1,xxxñ), xxxn+1, · · · ,xxxñ ≥ 0, and

Ã = [A, Iñ−n]. Assume rankÃ = m̃ and Ã = [B̃, Ñ ], where

B̃ is a nonsingular matrix of order m̃. Without loss of
generality, we can always assume that the front m̃ columns
of Ã are linearly independent, or one only needs to use
column permutation to achieve it. Furthermore, denote

¯̃xxx =

[
¯̃xxxB̃
¯̃xxxÑ

]

where the components in ¯̃xxxB̃ and ¯̃xxxÑ correspond to the col-

umn vectors in B̃ and Ñ , respectively. Hence, (7) is rewrit-
ten as

(B̃, Ñ)

[
¯̃xxxB̃
¯̃xxxÑ

]
= bbb
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and then
¯̃xxxÑ = B̃−1bbb− B̃−1Ñ ¯̃xxxÑ (8)

The column vectors in ¯̃xxxÑ are equal to the free variables in
linear algebra. Particularly, let ¯̃xxxÑ = 0; then

¯̃xxx =

[
¯̃xxxB̃
¯̃xxxÑ

]
=

[
B̃−1bbb

0

]
(9)

According to linear programming theory, if B̃−1bbb ≥ 0, then
(9) is a basic feasible solution of problem (7) subject to
¯̃xxx ≥ 0, and B̃ is a feasible basis matrix with its components
¯̃xxxB̃1

, · · · , ¯̃xxxB̃m̃
constituting a feasible basis set.

The following lemma which reflects the relationships be-
tween the extreme points set of P and the basic feasible
solutions is especially significant to our approach.

Lemma 1[15]. Let K = {xxx|Axxx = bbb,xxx ≥ 0}, A ∈ Rm×n,
and rankA = m. Then the set of the extreme points of the
polyhedron (feasible region) induced by Axxx = bbb,xxx ≥ 0 is
equal to the basic feasible solutions of K.

With this lemma, the polygon P can be recovered via
the following two steps.

Step 1. Obtain all of the basic feasible solutions of
problem (7) subject to ¯̃xxx ≥ 0;

Step 2. Apply projective mappings (5) to get the ex-
treme points of P.

Step 2 is obvious. Let us turn to consider Step 1. In fact,
to obtain the basic feasible solutions of problem (7), we
only need to use the elementary transformation techniques
to matrix Ã to get different feasible basis matrices. Since
rankÃ = m̃, the number of the basic feasible solutions do
not exceed (

ñ
m̃

)
=

ñ!

m̃!(m̃− ñ)!
(10)

3 Localization algorithm

According to the number of AUVs in the team, two
approaches will be used to recover the vertices (extreme
points) of the projection P. Once obtaining the uncertainty
region P, we realize the positioning of the AUVs.

3.1 Screening algorithm

This algorithm is used to recover the uncertainty region
P by screening all the critical points and removing the in-
ner points of the projection of P . The following example
combined with illustrations is used to explain this proce-
dure.

Without loss of generality, suppose that the vertices set
of the polyhedron P is V = {V1, · · · , V6} and the corre-

sponding vertices set of the polygon P is Ṽ = {Ṽ1, · · · , Ṽk}.
Note that k ≤ 6, since not all of the vertices obtained via
projecting V to R2 are the true vertices of P (some pro-
jective points may just be the inner points). Next, the
screening algorithm is applied to get the true vertices set
Ṽ in two steps.

Step 1. Determine the four critical vertices of P. As
shown in Fig. 2 (a), denote the whole vertices obtained via

projecting V to R2 as Vi(xi, yi), i = 1, · · · , 6. With Ṽ ini-
tialized to ∅, the screening algorithm is given as follows:

Begin
Because max1≤i≤6{xi|xi ∈ Vi(xi, yi)} = x4

therefore add V4 to Ṽ;
Because min1≤i≤6{xi|xi ∈ Vi(xi, yi)} = x2

therefore add V2 to Ṽ;
Because max1≤i≤6{yi|yi ∈ Vi(xi, yi)} = y1

therefore add V1 to Ṽ;
Because min1≤i≤6{yi|yi ∈ Vi(xi, yi)} = y3

therefore add V3 to Ṽ.
End
Thus, Ṽ = {V1,V2,V3,V4}.
Step 2. Judge the remaining vertices of V. As

shown in Fig. 2 (b), let y = κix + bi, i = 1, · · · , 4
be the equations of four lines generated in turn by
(V1,V2), (V3,V4), (V1,V4), (V2,V3), respectively. Consider
Vj(xj , yj) ∈ V \ {V1,V2,V3,V4}, j = 5, 6.

Begin
If yj = κixj + bj ≤ 0, i = 1, 2; j = 5, 6
or yj = κixj + bj ≥ 0, i = 1, 2; j = 5, 6

then add Vj to Ṽ;
Else if yj = κixj + bj ≤ 0, i = 3, 4; j = 5, 6
or yj = κixj + bj ≥ 0, i = 3, 4; j = 5, 6

then add Vj to Ṽ;
Else delete Vj .
End
Hence, the true vertices set is Ṽ = {V1,V2,V3,V4,V5}.
There is a degenerate case when the values of some

κi, i = 1, · · · , 4 are infinity. However, this case is easier
for us to deal with, since one only needs to consider the
component xi of Vi. Anyway, it shows that the above al-
gorithm holds for the degenerate case as well.

(a) Corresponding to Step 1

(b) Corresponding to Step 2

Fig. 2 A screening algorithm to recover the vertices of the
projection P

3.2 Approximation algorithm

For our purposes, when the number of the AUVs is large
(for example, n > 10), recovering the true projection P by
the screening algorithm is computationally too expensive.
Instead, the approximation approach chooses a search di-
rection and finds the maximum extent of P in this direction.
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This amounts to solving the linear programming problem

max
x̄xx

cccT
i x̄xx s.t. Ax̄xx ≤ bbb (11)

where ccci corresponds to the search direction and is chosen
parallel to the projection subspace (ccci ∈ span(DT)).

The solution to this linear programming problem yields
a vertex v∗i ∈ V in direction ccci and its supporting hyper-
plane Hi, where V ⊂ P is the set of extreme points of P.
The projection of Hi induces a half-space constraint on the
subspace under consideration. By repeating this process
for several search directions, an approximation P+ for the
true projection is obtained by intersecting these half-spaces.
Note that P+ is guaranteed to bound the true projection
P.

Then, let V− denote the set of projected extreme points
corresponding to different solutions of the linear program-
ming problem in (11). Similarly, let V and V+ represent the
vertices of the true projection P and the bounding approx-
imation P+, respectively. These are represented in Fig. 3.

Fig. 3 Set hierarchy generated through projection estimates
(P+ and P− correspond to upper and lower bounds to the true

set projection P, respectively.)

Note that V− ⊂ V, i.e., the set of the projected vertices
V− is the subset of the true projection′s vertex set V. This
means a lower bound estimate P− for P from the convex
hull of V− can also be constructed. This leads to a set
hierarchy P− ⊂ P ⊂ P+, from which the performance
indicator of the approximation algorithm can be defined as

PAA =
Area(P−)

Area(P+)
(12)

Obviously, 0 < PAA ≤ 1.
Recall that the initial search direction ccc1 ∈ span(DT)

can be chosen randomly without affecting the convergence
analysis. Hence, the search algorithm is given as follows:

Begin
Choose ccc1 ∈ span(DT)
ccc2 ⇐= −ccc1

v1 ⇐= π(maxx̄xx cccT
1 x̄xx s.t. Ax̄xx ≤ bbb)

v2 ⇐= π(maxx̄xx cccT
2 x̄xx s.t. Ax̄xx ≤ bbb)

ccc3 ⇐= v1v2
⊥{Choose ccc3 orthogonal to segment v1v2 }

ccc4 ⇐= −ccc3

v3 ⇐= π(maxx̄xx cccT
3 x̄xx s.t. Ax̄xx ≤ bbb)

v4 ⇐= π(maxx̄xx cccT
4 x̄xx s.t. Ax̄xx ≤ bbb)

V−4 ⇐= {v1, v2, v3, v4}
P−4 ⇐= Polygon(V−)
v+
1 = (v1, ccc1)

⋂
(v3, ccc3)

v+
2 = (v3, ccc3)

⋂
(v2, ccc2)

v+
3 = (v2, ccc2)

⋂
(v4, ccc4)

v+
4 = (v4, ccc4)

⋂
(v1, ccc1) {Vertices recovered from the in-

tersection of projected hyperplanes}
V+

4 ⇐= {v+
1 , v+

2 , v+
3 , v+

4 }

P+
4 ⇐= Polygon(V+)

End

After four times of searches, we obtain P+ = 2P−, and
the set P+\P− corresponds to disjoint regions, as shown
in Fig. 4 (a).

(a) After four times of searches, subsequent

search directions explore the largest disjoint

region

(b) By projecting normal to the edge AB in P−,

we create two disjoint regions ABH and EGI.

These will be added to and subtracted from P−
and P+, respectively

Fig. 4 Search procedure of the approximation algorithm

The subsequent search strategy then proceeds as follows:
1) Determine the prospective search region of the great-

est area;
2) Choose a search direction ccc⊥ normal to the corre-

sponding edge of P−;
3) Solve (11) with ccc = ccc⊥;
4) Refine estimates for P+ and P− accordingly.
This is illustrated in Fig. 4 (a). Using such a strategy

allows us to bound the number of searches necessary to
recover P as a function of the number of its vertices V.

Next, consider the performance of the approximation al-
gorithm (PAA). As shown in Fig. 4 (b), let A+ and A−
correspond to Area(P+) and Area(P−), respectively, and
Ss+1 denote the area of the region being searched. Then,
PAAs+1 is defined as

PAAs+1 =
A−s + hSi+1

A+
s − (1− h)2Si+1

=
Â−s + h

Â+
s − (1− h)2

(13)
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where Â−s = A−s /Si+1, Â+
s = A+

s /Si+1, and h corresponds
to the height of the vertex found normalized to the height
of the search region (h = HK/EF in Fig. 4 (b)). Minimize
(13) with respect to h, i.e.,

d(PAAs+1)

dh
|h=h∗ = 0

Then,

h∗ = −Â−s + [(Â−s + 1)2 − Â+
s ]

1
2

Substituting this into (13) yields

PAAs+1 =
Â−s − Â−s + [(Â−s + 1)2 − Â+

s ]
1
2

Â+
s − [1 + Â−s − ((Â−s + 1)2 − Â+

s )
1
2 ]2

=

[(Â−s + 1)2 − Â+
s ]

1
2

−2[((Â−s + 1)2 − Â+
s )− ((Â−s + 1)2 − Â+

s )
1
2 Â+

s ]
=

[(Â−s + 1)2 − Â+
s ]

1
2 + Â−s + 1

2Â+
s

=

Ss+1 +A−s + [(A−s + Ss+1)
2 −A+

s Ss+1]
1
2

2A+
s

=

PAAs +
Ss+1 −A−s + [(A−s + Ss+1)

2 −A+
s Ss+1]

1
2

2A+
s

This corresponds to the convergence in the worst case for
our approximation algorithm.

After examining Fig. 5, we will achieve PAA levels of
0.99 after 30 iterations even if in the worst case of conver-
gence.

Fig. 5 Worst case convergence of PAA vs. the number of
search iterations

3.3 Complexity

It is clear from Fig. 6 that with the increase in the num-
ber of AUVs, the computational complexities of the two
algorithms have a significant difference. When the number
of AUVs is small (for example, n ≤ 10), both the com-
plexities of the two algorithms are at the same level. How-
ever, when it is large, the computational complexity of the
screening algorithm increases dramatically and cannot be
ignored. In contrast to this, the approximation algorithm
has a proper computational complexity when the number
of AUVs becomes large.

Here, we need to explain two questions:
1) When should we select the screening algorithm?

When should we use the approximation algorithm? Is there
a principle?

2) Since the complexities of the two algorithms are at
the same level when the number of AUVs is small, can we

use the approximation algorithm instead of the former one,
in other words, are there any essential differences between
them?

Fig. 6 The computational complexities of the screening
algorithm and the approximation algorithm

To answer these questions, we should analyze the two al-
gorithms from a theoretical level. Considering the screening
algorithm, there is no approximation throughout the whole
process of recovering the uncertainty region, therefore it
does not have any theoretical errors. On the contrary, the
approximation algorithm does have theoretical errors since
the approximation is used to deal with the recovering pro-
cess. Thus, selecting a correct recovering algorithm should
make the computational complexity balanced with the the-
oretical error, and this is why we should use the screening
algorithm but not the approximation algorithm when the
number of AUVs is small.

4 Simulation results

Suppose that each AUV is capable of measuring the bear-
ing to its neighbor in a common reference frame with a
tolerance of ± 5◦. For range and bearing sensors, we as-
sume a tolerance of ± 10◦ and an accuracy of ± 10% of the
measured range.

Firstly, assume that there are three AUVs in our AUV
team. Let AUV1 be the origin of common reference
frame, i.e., the coordinate of AUV1 is O(0, 0). We fur-
ther assume that AUV2 is at A (5m, 5m) and AUV3 is

at A1 (10m, 0). Moreover, let rmax = OC = A1C1 =

(1+10 %)r = (1+10%)OA = (1+10%)AA1, rmin = OB =

A1B1 = (1 − 10%)r = (1 − 10%)OA = (1 − 10%)AA1,
α12 = 45◦, α32 = 135◦, and ∆α1 = ∆α3 = 5◦. Then,
via using the screening algorithm, it is shown that the un-
certainty region (Region 1) of AUV2 is bounded by the
intersection of two annular regions BB1CC1 generated by
AUV1 and AUV3 from Fig. 7.

To compare with the screening algorithm, this example is
simulated again by using the approximation algorithm un-
der the same conditions, which is also illustrated in Fig. 7.
We find that there is a vertex of the uncertainty region
(Region 2) of AUV2 outside the region BB1CC1 (By calcu-
lating, the “bad” vertex is exactly the D (5.978m, 4.958m)
in Fig. 7). This phenomenon does not happen by chance.
Since there are only three AUVs in this experiment and few
measurements can be used to generate linear constraints.
This leads to the approximation error accumulation and
slowly convergent rate when we use the approximation al-
gorithm to recover the uncertainty region. However, since
the screening algorithm does not have any theoretical errors
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during the recovering process, it converges sharply when
the number of the AUVs is small.

Fig. 7 Uncertainty regions generated by using the two
different algorithms when the number of AUVs is three

Then, we add 10 other AUVs to the experiment under
the previous condition. As clearly shown in Fig. 8, the two
uncertainty regions of AUV2 via using the two different
algorithms reflect the performance of the algorithms. This
example shows that some vertices of Region 1 (generated
by the screening algorithm) are outside the bounded re-
gion, which is generated by the other 12 AUVs, while Re-
gion 2 is completely in the bounded region. These results
reveal the fact that when the number of the AUVs is large,
the performance of the approximation algorithm improves
dramatically, while that of the screening algorithm is de-
clining.

Fig. 8 Uncertainty regions generated by using two different
algorithms when the number of AUVs is 13

In conclusion, the above two examples point out that
the more accurate uncertainty region can be obtained by
using the screening algorithm when the number of AUVs is
not large. However, when it is large (for example n > 10),
the error accumulation of the screening algorithm caused
by computational complexity cannot be ignored, since the
increment of the basic feasible solutions is combinatorial
complexity from (10). In this case, the approximation al-
gorithm should be selected, and this also validates our anal-
ysis at the end of Section 3.

Thus, the position and localization error for AUV2 can
be estimated from the centroid of the uncertainty region of
AUV2. In the two examples, localization errors are 2.3 %
and 2.1% with respect to the range measurements, respec-
tively. These error results have almost met the accuracy
level of the traditional “leader-follower” methods (about

1% ∼ 2% with respect to the range measurements[16−18]),

while there are smaller number of low-cost sensors needed
to be equipped for vehicles here. Therefore, it is an eco-
nomical and practical positioning approach.

5 Conclusion

In this paper, a cooperative localization algorithm for
AUVs is proposed. Instead of the traditional “leader-
follower” model, a “parallel” model is adopted to describe
the cooperative localization problem, and it is accomplished
by using convex optimization algorithms. Although the ac-
curacy of the sensors is not high enough for each AUV,
satisfactory localization results of the AUV swarm can still
be obtained through these algorithms. The key to our ap-
proach is how to recover the uncertainty region generated
by the linear constraints. And two different algorithms are
given to achieve this process. How to select a suitable algo-
rithm to solve practical problems depends on the number
of the AUVs. That is, when the number of the AUVs is not
large, we select the screening algorithm; otherwise, the ap-
proximation algorithm should be used. Simulation results
show that our positioning method offers a good localization
accuracy, and it is an economical and practical positioning
approach compared with the traditional approach.
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