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Delay-dependent Stability for
Systems with Fast-varying
Neutral-type Delays via a
PTVD Compensation

LIU Zhen-Wei1, 2 ZHANG Hua-Guang1, 2

Abstract The stability for a class of linear neutral systems
with time-varying delays is studied in this paper, where de-
lay in neutral-type term includes a fast-varying case (i.e., the
derivative of delay is more than one), which has never been
considered in current literature. The less conservative delay-
dependent stability criteria for this system are proposed by ap-
plying new Lyapunov-Krasovskii functional and novel polyno-
mials with time-varying delay (PTVD) compensation technique.
The aim to deal with systems with fast-varying neutral-type de-
lay can be achieved by using the new functional. The benefit
brought by applying the PTVD compensation technique is that
some useful elements can be included in criteria, which are gen-
erally ignored when estimating the upper bound of derivative of
Lyapunov-Krasovskii functional. A numerical example is pro-
vided to verify the effectiveness of the proposed results.
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There are two kinds of discrete time delays in systems:
retarded-type delay and neutral-type delay. The retarded-
type delay means that the delay is in the states of systems,
whereas the neutral-type delay means that the delay is in
the derivatives of states of systems. In recent years, the
neutral systems with delays (i.e., systems with retarded-
type delays and neutral-type delays) have received much
attention, and can be found in many fields, such as pop-
ulation ecology[1], distributed networks containing lossless
transmission lines[2], propagation and diffusion models[3],
and partial element equivalent circuits in very large scale
integration (VLSI) systems[4]. Thus, the stability of lin-
ear neutral systems with delay has developed into a hot
topic both in theory and in practice[5]. At present, the
stability results for linear neutral systems with delays can
be generally classified into two types: delay-independent
case which can be applied to delay with arbitrary size, and
delay-dependent case which makes use of the size of de-
lay. Generally speaking, the delay-dependent case is less
conservative than the delay-independent one. Therefore,
researches on delay-dependent stability for linear neutral
systems with delays has been extensively carried out. For
example, [6−7] proposed a descriptor system approach to
deal with linear neutral systems with delays. In [8−9], the
Lyapunov-Krasovskii functional with term xxx(t)−Cxxx(t− τ)
was employed, where xxx(t) was the system state, C was con-
stant matrix with ‖C‖ < 1, and τ was delay. Then, a free-

weighting matrix approach[10−11] was proposed to deal with
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linear delay systems.
Recently, some new techniques have been used in sta-

bility analysis of systems with delay. Those results
were included in [12−23]. In [12−13], the methods
based on characteristic function (or transfer function) were
used to deal with linear neutral systems with constant
delays. In [14−15], the authors considered the term

− ∫ t−d(t)

t−dM
ẋxxT(s)Zẋxx(s)ds in Lyapunov functional, which was

usually neglected in previous studies, where d(t) denoted
time-varying delay and dM denoted the upper bound of
d(t), i.e., d(t) ∈ [0, dM ]. The augmented Lyapunov-
Krasovskii functional was employed to reduce the conserva-
tiveness of stability results in [14, 16−18]. In [19−20], the
robust stability for the neutral systems with delays and
nonlinear perturbations were studied. And then, neutral
systems with distributed delays and interval delays were
found in [21−22]. In [23], the absolute stability of neu-
tral systems was studied. To the best of our knowledge,
there is no stability criterion that can deal with systems
with fast-varying neutral-type delays, i.e., the derivative of
neutral-type delay is more than one. How to obtain the
stability results dealing with fast-varying neutral-type de-
lay and reduce their conservativeness that has motivated
the present study.

In this paper, the stability of linear neutral system
with time-varying retarded-type delays and time-varying
neutral-type delays (including the fast-varying neutral-
type delay) is studied. By employing a new Lyapunov-
Krasovskii functional and novel polynomials with time-
varying delay (PTVD) compensation technique, the less
conservative stability criteria are obtained. Compared with
previous results, it is the first time to consider the fast-
varying neutral-type delay in neutral system with delay,
which is achieved by the new functional. Since the PTVD
compensation technique is used, some useful terms can be
introduced by using some polynomials with time-varying
delays to system, which are usually ignored at the pro-
cess estimating the upper bound of derivative of Lyapunov-
Krasovskii functional. Obviously, the criteria are less con-
servative by applying this novel technique. A numerical
example shows that our results are effective and less con-
servative than other reports in previous literature.

In the following, D = [dij ]n×n denotes an n × n real
matrix. DT and ‖D‖ represent the transpose and norm
of matrix, respectively, where ‖ · ‖ is the Euclidean norm.
D > 0 (D < 0) denotes that D is a positive (negative)
definite matrix. D ≥ 0 (D ≤ 0) denotes that D is a posi-
tive (negative) semidefinite matrix. I denotes the identity
matrix with an appropriate dimension.

1 System description and preliminaries
Consider the following linear neutral system with time-

varying delays:

ẋxx(t) = Axxx(t) + Bxxx(t− d(t)) + Cẋxx(t− τ(t)), t ≥ 0

xxx(t) = φφφ(t), ∀t ∈ [−max (dM , τM ), 0]
(1)

where xxx(·) = [x1(·) x2(·) · · · xn(·)]T is the state vector
of system, A, B, and C are constant matrices, and ‖C‖ < 1.
The initial condition φφφ(t) is a continuous and differentiable
vector-valued function of t ∈ [−max (dM , τM ), 0]. The
time-delays d(t) and τ(t) are two irrelevant differentiable
functions that satisfy

0 ≤ d(t) ≤ dM , ḋ(t) ≤ µ (2)
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and
0 ≤ τ(t) ≤ τM , η1 ≤ τ̇(t) ≤ η2 (3)

where dM > 0 and τM > 0. For parameters η1 and η2 in
(3), only two cases are considered in this paper, which are
1) η1 ≤ η2 < 1 (slowly varying delay, i.e., τ̇(t) < 1) and 2)
1 < η1 ≤ η2 (fast varying delay, i.e., τ̇(t) > 1). Especially,
for case 2), it is the first time to discuss the systems with
neutral-type time-varying delays.

The following lemmas will be used to prove the results
of this paper.

Lemma 1 (Jensen′s inequality[24]). For any constant
matrix Ω > 0, vector function χχχ(t) with appropriate dimen-
sions, and function σ(t) ∈ R satisfies 0 < σ(t) ≤ δ, we have

[∫ t

t−σ(t)

χχχ(s)ds

]T

Ω

[∫ t

t−σ(t)

χχχ(s)ds

]
≤

σ(t)

∫ t

t−σ(t)

χχχT(s)Ωχχχ(s)ds

Lemma 2. The following inequalities

{
∆ + βX1 < 0

∆ + βX2 < 0
(4)

are equivalent to the following condition

∆ + zX1 + (β − z)X2 < 0 (5)

where X1, X2, and ∆ are constant matrices with appropri-
ate dimensions, variable z ∈ [0, β] ∈ R, and β > 0.

Proof. See Appendix. ¤
Remark 1. Lemma 2 is proposed based on the idea

of convex combination[25]. Since the proof was not given
in [25], the detailed proof is provided in this paper. Some
similar results were employed in [26−28].

2 Main results
In this section, the new stability criteria will be proposed

to deal with linear neutral systems with time-varying delay.
An augmented Lyapunov-Krasovskii functional and PTVD
compensation technique will be used in the proposed crite-
ria. First, the case of slow-varying neutral-type delay will
be considered, i.e., η1 ≤ η2 < 1.

Theorem 1. System (1) with time-varying delays d(t)
and τ(t) satisfying (2) and (3) is asymptotically stable, for
the given scalar parameters dM , µ, τM , and η1 ≤ η2 < 1, if
there exist some matrices:

P = PT =




P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33


 > 0

Q1 = QT
1 > 0, Q2 = QT

2 > 0, R1 = RT
1 > 0, R2 = RT

2 > 0

Y1 = Y T
1 > 0, Y2 = Y T

2 > 0, Z1 = ZT
1 > 0, Z2 = ZT

2 > 0

S1 = ST
1 > 0, S2 = ST

2 > 0, S3 = ST
3 > 0

such that the following matrix inequalities hold:

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
1 Z1e1 − eT

3 Z2e3 < 0 (6)

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
1 Z1e1 − eT

4 Z2e4 < 0 (7)

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
2 Z1e2 − eT

3 Z2e3 < 0 (8)

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
2 Z1e2 − eT

4 Z2e4 < 0 (9)

where Φ is shown at the bottom of this page,

Φ1 =P11A + ATP11 + Q1 + Q2 + R1 − Z1 − Z2 + η2S1

Φ2 =− (1− µ)Q1 − 2Z1

Φ3 =−Q2 − Z1

Φ4 =− (1− η2)R1 + (1− η1)R2 − 2Z2 + η2S2

Φ5 =−R2 − Z2 + η2S3

Φ6 =− (1− η2)Y1 + (1− η1)Y2 + η2P
T
12S

−1
1 P12 +

η2P22S
−1
2 P22 + η2P23S

−1
3 PT

23

Ā =
[

A B 0 0 0 C 0
]

e1 =
[

I −I 0 0 0 0 0
]

e2 =
[

0 I −I 0 0 0 0
]

e3 =
[

I 0 0 −I 0 0 0
]

e4 =
[

0 0 0 I −I 0 0
]

and ∗ denotes the symmetric terms in a symmetric matrix.
Proof. Construct the following Lyapunov-Krasovskii

functional:

V (xxx(t)) = V1(xxx(t)) + V2(xxx(t)) + V3(xxx(t)) + V4(xxx(t)) (10)

where

V1(xxx(t)) = δδδT(t)Pδδδ(t)

V2(xxx(t)) =

∫ t

t−d(t)

xxxT(s)Q1xxx(s)ds +

∫ t

t−dM

xxxT(s)Q2xxx(s)ds

V3(xxx(t)) =

∫ t

t−τ(t)

(
xxxT(s)R1xxx(s) + ẋxxT(s)Y1ẋxx(s)

)
ds +

∫ t−τ(t)

t−τM

(
xxxT(s)R2xxx(s) + ẋxxT(s)Y2ẋxx(s)

)
ds

V4(xxx(t)) = dM

∫ 0

−dM

∫ t

t+θ

ẋxxT(s)Z1ẋxx(s)dsdθ +

τM

∫ 0

−τM

∫ t

t+θ

ẋxxT(s)Z2ẋxx(s)dsdθ

where δδδT(t) =
[
xxxT(t) xxxT(t− τ(t)) xxxT(t− τM )

]
, P =

PT =




P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33


 > 0, Qk = QT

k > 0, Rk =

RT
k > 0, Yk = Y T

k > 0, Zk = ZT
k > 0, and k = 1, 2.

Φ =




Φ1 P11B + Z1 0 ATP12 + Z2 ATP13 P11C + P12 P13

∗ Φ2 Z1 BTP12 BTP13 0 0
∗ ∗ Φ3 0 0 0 0
∗ ∗ ∗ Φ4 Z2 PT

12C + P22 P23

∗ ∗ ∗ ∗ Φ5 PT
13C + PT

23 P33

∗ ∗ ∗ ∗ ∗ Φ6 0
∗ ∗ ∗ ∗ ∗ ∗ −Y2



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Calculating the time derivatives of Vi(xxx(t)) (i = 1, 2, 3, 4)
along the trajectories of system (1) yields

V̇1(xxx(t)) = 2




xxx(t)
xxx(t− τ(t))
xxx(t− τM )




T 


P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33


×




Axxx(t) + Bxxx(t− d(t)) + Cẋxx(t− τ(t))
(1− τ̇(t))ẋxx(t− τ(t))

ẋxx(t− τM )




(11)

V̇2(xxx(t)) ≤ xxxT(t)(Q1 + Q2)xxx(t)+

(1− µ)xxxT(t− d(t))Q1xxx(t− d(t)) −
xxxT(t− dM )Q2xxx(t− dM ) (12)

V̇3(xxx(t)) ≤ xxxT(t)R1xxx(t)− xxxT(t− τM )R2xxx(t− τM ) −
(1− η2)xxx

T(t− τ(t))R1xxx(t− τ(t))+

(1− η1)xxx
T(t− τ(t))R2xxx(t− τ(t))+

ẋxxT(t)Y1ẋxx(t)− ẋxxT(t− τM )Y2ẋxx(t− τM )−
(1− η2)ẋxx

T(t− τ(t))Y1ẋxx(t− τ(t))+

(1− η1)ẋxx
T(t− τ(t))Y2ẋxx(t− τ(t)) (13)

V̇4(xxx(t)) = d2
MẋxxT(t)Z1ẋxx(t)− dM

∫ t

t−dM

ẋxxT(s)Z1ẋxx(s)ds +

τ2
MẋxxT(t)Z2ẋxx(t)− τM

∫ t

t−τM

ẋxxT(s)Z2ẋxx(s)ds

(14)

For the terms with τ̇(t) in (11), by using some matrices
S1 = ST

1 > 0, S2 = ST
2 > 0, and S3 = ST

3 > 0, there is the
following inequality:

− 2τ̇(t)




xxx(t)
xxx(t− τ(t))
xxx(t− τM )




T 


P12

P22

PT
23


 ẋxx(t− τ(t)) ≤

η2




xxx(t)
xxx(t− τ(t))
xxx(t− τM )




T 


S1 0 0
0 S2 0
0 0 S3







xxx(t)
xxx(t− τ(t))
xxx(t− τM )


 +

η2ẋxx
T(t− τ(t))

(
PT

12S
−1
1 P12 + P22S

−1
2 P22+

P23S
−1
3 PT

23

)
ẋxx(t− τ(t)) (15)

To utilize the information that was ignored in previous
results, we apply the following two polynomials:

ρ1 = d(t)

∫ t

t−dM

ẋxxT(s)Z1ẋxx(s)ds−τ(t)

∫ t

t−τM

ẋxxT(s)Z2ẋxx(s)ds

(16)

ρ2 = τ(t)

∫ t

t−τM

ẋxxT(s)Z2ẋxx(s)ds−d(t)

∫ t

t−dM

ẋxxT(s)Z1ẋxx(s)ds

(17)
where polynomials ρ1 and ρ2 are named as PTVD com-
pensation terms. It is clear that ρ1 + ρ2 = 0. Then,
using PTVD compensation terms ρ1 and ρ2, Jensen′s
inequality[24], and Leibniz-Newton formula, V̇4(xxx(t)) can
be rewritten as follows

V̇4(xxx(t)) = V̇4(xxx(t)) + ρ1 + ρ2 =

d2
MẋxxT(t)Z1ẋxx(t) + τ2

MẋxxT(t)Z2ẋxx(t)−

d(t)

∫ t

t−d(t)

ẋxxT(s)Z1ẋxx(s)ds−

(dM − d(t))

∫ t

t−d(t)

ẋxxT(s)Z1ẋxx(s)ds−

(dM − d(t))

∫ t−d(t)

t−dM

ẋxxT(s)Z1ẋxx(s)ds−

d(t)

∫ t−d(t)

t−dM

ẋxxT(s)Z1ẋxx(s)ds−

τ(t)

∫ t

t−τ(t)

ẋxxT(s)Z2ẋxx(s)ds−

(τM − τ(t))

∫ t

t−τ(t)

ẋxxT(s)Z2ẋxx(s)ds−

(τM − τ(t))

∫ t−τ(t)

t−τM

ẋxxT(s)Z2ẋxx(s)ds−

τ(t)

∫ t−τ(t)

t−τM

ẋxxT(s)Z2ẋxx(s)ds ≤

d2
MẋxxT(t)Z1ẋxx(t) + τ2

MẋxxT(t)Z2ẋxx(t)−
[∫ t

t−d(t)

ẋxx(s)ds

]T

Z1

[∫ t

t−d(t)

ẋxx(s)ds

]
−

[∫ t−d(t)

t−dM

ẋxx(s)ds

]T

Z1

[∫ t−d(t)

t−dM

ẋxx(s)ds

]
−

[∫ t

t−τ(t)

ẋxx(s)ds

]T

Z2

[∫ t

t−τ(t)

ẋxx(s)ds

]
−

[∫ t−τ(t)

t−τM

ẋxx(s)ds

]T

Z2

[∫ t−τ(t)

t−τM

ẋxx(s)ds

]
−

dM − d(t)

d(t)

[∫ t

t−d(t)

ẋxx(s)ds

]T

Z1×
[∫ t

t−d(t)

ẋxx(s)ds

]
− d(t)

dM − d(t)
×

[∫ t−d(t)

t−dM

ẋxx(s)ds

]T

Z1

[∫ t−d(t)

t−dM

ẋxx(s)ds

]
−

τM − τ(t)

τ(t)

[∫ t

t−τ(t)

ẋxx(s)ds

]T

Z2×
[∫ t

t−τ(t)

ẋxx(s)ds

]
− τ(t)

τM − τ(t)
×

[∫ t−τ(t)

t−τM

ẋxx(s)ds

]T

Z2

[∫ t−τ(t)

t−τM

ẋxx(s)ds

]
≤

d2
MẋxxT(t)Z1ẋxx(t) + τ2

MẋxxT(t)Z2ẋxx(t)− ζζζT(t)Z0ζζζ(t)−
dM − d(t)

dM
ζζζT(t)eT

1 Z1e1ζζζ(t)−
d(t)

dM
ζζζT(t)eT

2 Z1e2ζζζ(t)−
τM − τ(t)

τM
ζζζT(t)eT

3 Z2e3ζζζ(t)−
τ(t)

τM
ζζζT(t)eT

4 Z2e4ζζζ(t) (18)
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where ζζζT(t) = [xxxT(t) xxxT(t − d(t)) xxxT(t − dM ) xxxT(t −
τ(t)) xxxT(t− τM ) ẋxxT(t− τ(t)) ẋxxT(t− τM )] and

Z0 =




Z1 + Z2 −Z1 0 −Z2 0 0 0
−Z1 2Z1 −Z1 0 0 0 0

0 −Z1 Z1 0 0 0 0
−Z2 0 0 2Z2 −Z2 0 0

0 0 0 −Z2 Z2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




Thus, according to (11)∼ (13), (15), and (18), V̇ (xxx(t))
can be rewritten as follows

V̇ (xxx(t)) ≤ ζζζT(t)
[
Φ + ĀT(Y1 + d2

MZ1 + τ2
MZ2)Ā −

dM − d(t)

dM
eT
1 Z1e1 − d(t)

dM
eT
2 Z1e2 −

τM − τ(t)

τM
eT
3 Z2e3 − τ(t)

τM
eT
4 Z2e4

]
ζζζ(t) (19)

Obviously, if matrix inequality Φ + ĀT(Y1 + d2
MZ1 +

τ2
MZ2)Ā− dM−d(t)

dM
eT
1 Z1e1− d(t)

dM
eT
2 Z1e2− τM−τ(t)

τM
eT
3 Z2e3−

τ(t)
τM

eT
4 Z2e4 < 0, then V̇ (xxx(t)) < 0. Based on Lemma 2,

the above-mentioned matrix inequality is equivalent to the
following matrix inequalities

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
1 Z1e1−

τM − τ(t)

τM
eT
3 Z2e3 − τ(t)

τM
eT
4 Z2e4 < 0 (20)

and

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
2 Z1e2−

τM − τ(t)

τM
eT
3 Z2e3 − τ(t)

τM
eT
4 Z2e4 < 0 (21)

when d(t) = 0 and d(t) = dM , respectively. Then, applying
Lemma 2 again, (20) and (21) are equivalent to (6)∼ (9),

i.e., Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā − dM−d(t)
dM

eT
1 Z1e1 −

d(t)
dM

eT
2 Z1e2 − τM−τ(t)

τM
eT
3 Z2e3 − τ(t)

τM
eT
4 Z2e4 < 0 is equiv-

alent to (6)∼ (9). Thus, if (6)∼ (9) are satisfied, then

V̇ (xxx(t)) < 0, i.e., system (1) is asymptotically stable. ¤
Remark 2. In Theorem 1, there are two points which

are different from the previous results for linear neutral
systems with time-varying delays.

1) An augmented Lyapunov-Krasovskii functional V1 is
used to deal with the stability problem of linear neutral sys-
tems with the time-varying delays. Meanwhile, the func-
tionals used in previous literature are listed as follows:

xxxT(t)Pxxx(t) = δδδT(t)




P 0 0
0 0 0
0 0 0


δδδ(t) (22)

(xxxT(t)− xxxT(t− τM )CT)P (xxx(t)− Cxxx(t− τM )) =

δδδT(t)




P 0 −PC
0 0 0

−CTP 0 CTPC


δδδ(t) (23)

Obviously, (22) and (23) are just the special cases of func-
tional V1. That is to say, compared with results employing
(22) and (23), the criterion using functional V1 has a larger
solution set.

2) Theorem 1 not only depends on delay d(t), but also de-
pends on neural-type delay τ(t). Since the delay-dependent
criteria are less conservative than delay-independent ones,
Theorem 1 is less conservative than the criteria independent
of neural-type delay. The numerical example in Section 3
can also verify this point.

Remark 3. When Jensen′s inequality is
used to deal with −dM

∫ t

t−dM
ẋxxT(s)Z1ẋxx(s)ds and

−τM

∫ t

t−τM
ẋxxT(s)Z2ẋxx(s)ds in (14), it can be dealt with

as follows:

− dM

∫ t

t−dM

ẋxxT(s)Z1ẋxx(s)ds− τM

∫ t

t−τM

ẋxxT(s)Z2ẋxx(s)ds ≤

−
[∫ t

t−d(t)

ẋxx(s)ds

]T

Z1

[∫ t

t−d(t)

ẋxx(s)ds

]
−

[∫ t−τ(t)

t−dM

ẋxx(s)ds

]T

Z1

[∫ t−τ(t)

t−dM

ẋxx(s)ds

]
−

[∫ t

t−τ(t)

ẋxx(s)ds

]T

Z2

[∫ t

t−τ(t)

ẋxx(s)ds

]
−

[∫ t−τ(t)

t−τM

ẋxx(s)ds

]T

Z2

[∫ t−τ(t)

t−τM

ẋxx(s)ds

]
(24)

According to (18), it is meant that the terms −d(t)×∫ t−d(t)

t−dM
ẋxxT(s)Z1ẋxx(s)ds, −(dM−d(t))

∫ t

t−d(t)
ẋxxT(s)Z1ẋxx(s)ds,

−τ(t)
∫ t−τ(t)

t−τM
ẋxxT(s)Z2ẋxx(s)ds, and −(τM − τ(t))×∫ t

t−τ(t)
ẋxxT(s)Z2 × ẋxx(s)ds could be ignored at the process

of estimating the upper bound of V̇ (xxx(t)) in the previous
literature. Obviously, it leads to the increase of conser-
vativeness in stability results. In this paper, we apply
the novel PTVD compensation technique shown as (18)
to compensate these ignored terms. Thus, a new stability
criterion using this method can be obtained. Furthermore,
since there are two irrelevant time-varying delays d(t) and
τ(t), PTVD compensation technique can be used only for
function d(t) or τ(t). Thus, on the premise of reducing the
load of calculation, the satisfactory stability results can be
derived.

In Theorem 1, the stability result depends not only on
retarded-type delay but also on neutral-type delay. Then,
the stability criterion only dependent on retarded-type de-
lays will be proposed. Especially, the case of fast-varying
neutral-type delay will be first considered in the following
theorem.

Theorem 2. System (1) with time-varying delays d(t)
and τ(t) satisfying (2) and (3) is asymptotically stable, for
the given scalar parameters dM , µ, and η1 ≤ η2 < 1 or
1 < η1 ≤ η2, if there exist some matrices:

P = PT =




P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33


 > 0

Q1 = QT
1 > 0, Q2 = QT

2 > 0, R1 = RT
1 > 0, R2 = RT

2 > 0

Y1 = Y T
1 > 0, Y2 = Y T

2 > 0, Z1 = ZT
1 > 0

S1 = ST
1 > 0, S2 = ST

2 > 0, S3 = ST
3 > 0

such that the following matrix inequalities hold:

Φ̄ + ĀT(Y1 + d2
MZ1)Ā− eT

1 Z1e1 < 0 (25)

Φ̄ + ĀT(Y1 + d2
MZ1)Ā− eT

2 Z1e2 < 0 (26)
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where Φ̄ is shown at the bottom of this page,

Φ̄1 =P11A + ATP11 + Q1 + Q2 + R1 − Z1 + η2S1

Φ̄4 =− (1− η2)R1 + (1− η1)R2 + η2S2

and the other parameters are the same as those defined in
Theorem 1.

Proof. Construct the following Lyapunov-Krasovskii
functional:

V̄ (xxx(t)) = V1(xxx(t)) + V2(xxx(t)) + V3(xxx(t)) + V̄4(xxx(t)) (27)

where V1(xxx(t)), V2(xxx(t)), and V3(xxx(t)) are the same as the
definitions in Theorem 1, and

V̄4(xxx(t)) = dM

∫ 0

−dM

∫ t

t+θ

ẋxxT(s)Z1ẋxx(s)dsdθ

The process of proof is similar to Theorem 1. ¤
Remark 4. The systems with fast-varying neutral-type

delays (i.e., τ̇(t) > 1) can be first considered in Theorem 2,
which is achieved by using condition (3) and functional V3.
So far, there has been no literature referring to this case.

Remark 5. For Theorems 1 and 2, only by setting
Q1 = 0, the criteria independent of derivative of delay func-
tion d(t) can be derived.

3 Numerical example
In this section, an example will be given to verify the

proposed criteria.
Consider linear neutral system (1) with the following

parameters[9]:

A =

[ −0.9 0.2
0.1 −0.9

]
, B =

[ −1.1 −0.2
−0.1 −1.1

]

C =

[ −0.2 0
0.2 −0.1

]

and delay functions d(t) and τ(t) satisfy conditions (2) and
(3).

Applying LMI Toolbox of Matlab, we can solve the max-
imum allowable upper bounds dM by setting τM , µ, η1,
and η2. With τM = 0.1, the stability results obtained by
[8, 19−20, 22], and this paper for different µ, η1, and η2, re-
spectively, are shown in Table 1. It is clear that the stability
results by using our method are less conservative. When
η1 ≤ η2 < 1, the upper bound dM obtained by using Theo-
rem 1 is larger than that by using Theorem 2. Meanwhile,
Theorem 2 is more effective and suitable to deal with linear
systems with fast-varying neutral-type delays. Since only
two matrix inequalities need to be solved, Theorem 2 is of
less calculation load.

4 Conclusion

A class of linear neutral systems with time-varying
retarded-type delays and time-varying neutral-type delays
is investigated in this paper. Since a new Lyapunov-
Krasovskii functional and novel PTVD compensation tech-
nique are introduced, the less conservative stability crite-
rion is proposed. The gain using the new functional is
that the stability of linear neutral systems with fast-varying
neutral-type delays (i.e., τ̇(t) > 1) can be obtained, which
is for the first time considered in the stability criteria. Some
useful terms can be considered by using the PTVD compen-
sation technique, which are usually ignored at the process
of estimating the upper bound of V̇ (xxx(t)). The numerical
example has proved that the proposed criteria are effective.

Appendix

The proof of Lemma 2. 1) (5)⇒(4)
Since variable z satisfies the following condition at inter-

val [0, β],

∆ + zX1 + (β − z)X2 < 0

Φ̄ =




Φ̄1 P11B + Z1 0 ATP12 ATP13 P11C + P12 P13

∗ Φ2 Z1 BTP12 BTP13 0 0
∗ ∗ Φ3 0 0 0 0
∗ ∗ ∗ Φ̄4 0 PT

12C + P22 P23

∗ ∗ ∗ ∗ −R2 + η2S3 PT
13C + PT

23 P33

∗ ∗ ∗ ∗ ∗ Φ6 0
∗ ∗ ∗ ∗ ∗ ∗ −Y2




Table 1 Maximum allowable upper bounds dM for different µ and τM = 0.1

Methods µ = 0.7 µ = 0.8 µ = 0.9 Unknown µ

[8] dM = 0.3890 dM = 0.2547 dM = 0.1253 –

[19] dM = 1.0071 dM = 0.9201 dM = 0.8347 dM = 0.7603

η1 = η2 = 0 (τ(t) = τM ) [22] dM = 1.0425 dM = 0.9515 dM = 0.8596 dM = 0.7652

[20] dM = 1.0628 dM = 0.9642 dM = 0.8642 dM = 0.7652

Theorem 2 dM = 1.1281 dM = 1.0941 dM = 1.0882 dM = 1.0882

Theorem 1 dM = 1.1642 dM = 1.1294 dM = 1.1210 dM = 1.1208

[22] dM = 0.9938 dM = 0.9083 dM = 0.8224 dM = 0.7345

η1 = 0, η2 = 0.5 Theorem 2 dM = 1.0448 dM = 1.0160 dM = 1.0093 dM = 1.0093

Theorem 1 dM = 1.1071 dM = 1.0755 dM = 1.0688 dM = 1.0688

η1 = 1.1, η2 = 2.0 Theorem 2 dM = 1.2170 dM = 1.1824 dM = 1.1774 dM = 1.1774
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Thus, when variable z = β and z = 0, the two following
inequalities hold

∆ + βX1 < 0, ∆ + βX2 < 0

2) (4)⇒(5)
Let matrices ∆1 and ∆2 satisfy the following conditions

∆1 = ∆ + βX1 < 0, ∆2 = ∆ + βX2 < 0

We can get the following result:

z∆1 + (β − z)∆2 < 0

i.e.,
β(∆ + zX1 + (β − z)X2) < 0

Since β > 0, the following inequality holds

∆ + zX1 + (β − z)X2 < 0

¤
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