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Abstract In this paper, an iterative adaptive critic design (ACD) algorithm is proposed to solve a class of discrete-time two-
person zero-sum games for Roesser type 2-D system. The idea is to use adaptive critic technique to obtain the optimal control
pair iteratively to make the performance index function reach the saddle point of the zero-sum games. The proposed iterative ACD
algorithm can be implemented based on the input and state data without the system model. Stability analysis of the 2-D system is
presented and the convergence property of the performance index function is also proved. Neural networks are used to approximate
the performance index function and compute the optimal control policies, respectively, for facilitating the implementation of the
iterative ACD algorithm. The optimal control scheme of the air drying process is given to illustrate the performance of the proposed

method.
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A large class of complicated practical systems are con-
trolled by more than one controller or decision maker with
each using an individual strategy. These controllers of-
ten operate in a group with a general performance index
function as a game!’!. Zero-sum game theory has been
widely applied to decision making and control engineering
problems[%m. In these situations, many control schemes
are presented in order to reach some form of optimality®~ 7.
In [8], zero-sum game was proposed to solve multiuser op-
timal flow control. In [9], the zero-sum game problem was
discussed for noncooperative decision makers. Based on the
zero-sum theory, the designs of controller in the worst case
and the design of Ho controller were proposed in [10 —12].
However, aforementioned results on zero-sum game are only
for the one-dimensional systems. In the real world, many
complicated control systems are described by 2-dimensional
(2-D) structures™® . The key feature of a 2-D system is
that the information is propagated along two independent
directions. Many physical processes, such as thermal pro-
cesses, image processing, signal filtering, etc., have a clear
2-D structure. The 2-D system theory is frequently used as
an analysis tool to solve some problems, e.g., iterative learn-
ing control™® and repetitive process controll'®. So many
control schemes are presented for 2-D system in order to
obtain the optimal performance!’” '8, while there are few
results on the zero-sum games for 2-D systems. The great
difficulty of the zero-sum games for 2-D systems is that
the optimal recurrent equation, so called Hamilton-Jacobi-
Isaacs (HJI) equation, is invalid in 2-D structure, which
means that the optimal control pair cannot be obtained by
the classical dynamic programming theory. Another diffi-
culty lies in the fact that for many 2-D systems the model
of the system cannot be obtained inherently. So it is im-
portant and necessary to give a new method to solve the
zero-sum games for 2-D system without a system model.
This motivates our research.

The adaptive critic designs (ACDs) are very useful tools
in solving the optimal control problems and have received
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considerable attention for the past three decades!®~22.

ACDs were firstly proposed in [23 — 25] as a way to solve
optimal control problems forward-in-time. ACDs combine
reinforcement learning technique and dynamic program-
ming theory with neural networks. In [13], the ACDs
were classified into four main schemes: heuristic dynamic
programming (HDP), dual heuristic dynamic programming
(DHP), action dependent heuristic dynamic programming
(ADHDP), also known as Q-learning!®?!, and action depen-
dent dual heuristic dynamic programming (ADDHP). In
[26], another two ACD schemes known as globalized-DHP
(GDHP) and ADGDHP were developed. Though in recent
years, ACDs have been further studied by many researchers
such as [27 — 35], wherein most results focus on the optimal
control problem with a single controller. Only in [36], based
on HJI equation, zero-sum game was discussed for 1-D sys-
tem. To the best of our knowledge, there are no results
discussing how to solve the zero-sum game problem for 2-D
systems.

In brief, it is the first time for the zero-sum game to solve
for a 2-D system by ACD technique. The main contribu-
tions of this paper include:

1) Propose a new optimality principle for Roesser type
2-D system and obtain the optimal control formulation in
theory.

2) Propose an iterative algorithm based on ACD tech-
nique (iterative ACD algorithm for brief) to obtain the op-
timal control pair iteratively with rigorous stability and
convergence analysis.

3) Develop the iterative ACD algorithm into data-driven
situation. What is needed to know is only the input and
state data, and the model of the system is not required.

This paper is organized as follows. Section 1 presents the
preliminaries and assumptions. In Section 2, the optimal
control for zero-sum games for 2-D systems is proposed and
the properties of the optimal control are also discussed. In
Section 3, data-based iterative ACD algorithm is proposed
with the convergence analysis. In Section 4, the neural net-
work implementation for the control scheme is discussed.
In Section 5, an example is given to demonstrate the effec-
tiveness of the proposed control scheme. The conclusion is
drawn in Section 6.

1 Preliminaries and assumptions

Basically, we consider the following discrete-time linear
Roesser type 2-D system

(k1) = Az(k,1) + Bu(k,l) + Cw(k,1) 1)
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z"(0,0) = f(I), " (k,0)=g(k) (2) Therefore, Assumption 2 is necessary. Thirdly, the bound-
) ary conditions f(I) and g(k) in (2) should be boundary, but
with not necessary smooth or continuous functions. For exam-
h h ple, let
— ll?(k,l) + — $(k+1,l)
o) = | D] et = (2T @ o
ro={6 157 ™)

where 2" (k,1) is the horizon state in R™, zV(k,1) is the
vertical state in R", wu(k,l) and w(k,l) are the con-
trol inputs in R™' and R™?2. Let the system matri-
ces A € Rimitna)x(mtnz) g ¢ Rlmtnadxm ang ¢ ¢
R(M*n2)Xm2 - Agsume all the system matrices are nonsin-
gular and the system matrices can be expressed by

a=[an]e=[B]e-[a]

The function f(I) and g(k) are corresponding boundary
conditions along two independent indirections.
We define the following denotements

(k,1) < (m,n) if and only if k <m andl<n
(k,l) = (m,n) ifandonlyif k=mandl=n
(k,1) < (m,n) if and only if (k,1) < (m,n) and

(k1) # (m,n) (%)

Then, the infinite-time performance index function for
2-D systems can be given by

2>

(0,0)<(k,1)<(00,00)

u” (k, 1) Ru(k, 1) + w"

V(2(0,0),u,w) = (zT(k,l)Qm(k,l)+

(k, 1) Sw(k, 1))
(6)

where Q > 0, R > 0, and § < 0 are with suit-
able dimensions and L(z(k,1),u(k,1)) = ™ (k,1)Qxz(k,1) +
uT(k,D)Ru(k,1) + wT (k,1)Sw(k,1) is the utility function.
For the above zero-sum game, the two control variables
u and w are chosen, respectively, by player I and player
II where player I tries to minimize the performance index
function V (z), while player I attempts to maximize it. The
following assumptions are proposed that are in effect in the
remaining sections.

Assumption 1. The 2-D system (1) is controllable un-
der the control variables u and w.

Assumption 2. For the boundary conditions for the

2-D system (1), the terms Z "7 (k,0) z¥(k,0),
o hT
leo z"T(0,1) z"(0,1), and ZZ VI (k, 0)x

(0,0)<(k,l)<(00,00)
z(0,1) are all bounded.

Assumption 3. There exists an unique saddle point of
the zero-sum game for the 2-D system (1).

There are some important characters that must be
pointed out. Firstly, for the 1-D control system, the bound-
ary condition is just an initial point of state, while the
boundary conditions of 2-D system are two given state
curves along two different directions. Secondly, for the zero-
sum games of 2-D system under the infinite time horizon,
the boundary state trajectories are uncontrollable and so

the terms Z T(k,0)Qz(k, 0), ZZOmT(O,l)Qm(O,Z),

and Z Z 2T (k,0)Qz(0,1) may be infinite, which
(0,0)<(k,l)<(00,00)
means the performance index function (6) is infinite.

where c is any real constant number and T is a given real
number. So, Assumption 2 is not very strong.

According to Assumption 3, the optimal performance
index function can be expressed as

Z >
(k,1) <(i,5) <(00,00)
u" (6,5 Ru(i,§) +w" (i, ) Sw(i, ) ) =
mgxrrﬂn Z Z (a:T(i,j)Qx(i,j)—i—

(k,1) < (4,5) <(o0,00)

= min max
u w

V(@ (k,1)) (" () Qe(,9)+

u" (i, ) Ru(i, j) + 0" (i,j)Sw(i, ) (8)

2 The optimal control for the zero-sum
games for 2-D systems

For zero-sum games for 1-D systems, the optimal perfor-
mance index function can be written by a recurrent formu-
lation according to the dynamic programming principle®®
However, for zero-sum games for 2-D systems, the dynamic
programming principle may not be true. The main diffi-
culty lies in the state of the 2-D system in the next stage
coupling with the states of two different directions in the
current stage and then the dynamic programming equation
of the zero-sum games for 2-D systems does not exist. So
in this paper, we propose an optimality principle for 2-D
system and obtain the expressions of optimal control pair
for the zero-sum game.

2.1 The optimality principle for zero-sum games
for 2-D systems

In this subsection, we will propose the optimality prin-
ciple for the zero-sum games for 2-D systems, and discuss
the properties of the optimal control pair derived by the
principle.

Theorem 1. Given the performance index function de-
fined as (6), if u(k,!) minimizes and w(k,!) maximizes the
performance index function (6), respectively, subject to the
system equation (1), and then there are (n+m)-dimensional
vector sequences A(k, 1) and AT (k,1) defined as

=[] wo-[5Eg] o

where A"(k,1) € R™ and X' (k,l) € R"2, such that for all

(0,0) < (k,1) < (00, 00)
1) State equation:
OH (k1)
= (kD) = S (10)
2) Costate equation:
_ O0H(k,1)
Ak, 1) = Bz (kD) (11)
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3) Stationarity equation:

_9H (k1) _9H(k,1)
T kD 7wk "

where H(k,!l) is a Hamilton function defined as

H(k,1) =" (k,1)Qx(k,1) +u" (k,1)Ru(k, 1)+

w” (k, 1) Sw(k, 1) + AT (k, 1) (Az(k, 1) +
Bu(k,l) + Cw(k,1)) (13)
Proof. By examining the gradients of each of the state
equations, i.e., vector of partial derivatives with respect to
all the variables (k, ), u(k, 1), and w(k, ) appearing in (6),
they are easily seen to be linearly independent. The opti-
mum of the performance index function (6) is, therefore,
a regular point of system (1) (see [37], pp.187). The exis-
tence of linear independent A(k, 1), (0,0) < (k,1) < (o0, 00)
is immediately from the Lagrange multiplier theory (see

[37], pp.187-198).
Let

V' (a(k, 1), u,w) = {70 7)Qa(i. ) +
(kD)< (4,5) < (00,00)
u” (i, j)Ru(i, §) +w' (4,5)Sw(i, j) +
X, 9) (A= (i, )+ Bu(i, )+ Cw(i, )~
(i)} (14)
We introduce the Hamilton function of (13) and rewrite
(14) as
Vi (x(k,1),u,w) =
3 {HGH-ATGHe 6 (5)
(kD)< (i,7) < (00,00)

The last term in the previous double summation can be
be expanded as

2.0

(k1) <(i,5) <(00,00)

> [A%J)x(i,j)—}jAhT(o,j)wh(o,j)—

(k,1)<(i,5) <(00,00) J=l

> X6, 002 (i, 0)] (16)

i=k

A+T(i,j)$+(i,j) =

According to the Lagrange multiplier theory, the incre-
ment V' due to increments in all z(k, 1), u(k, 1), w(k,l), and
A(k, 1) must be zero at a constrained minimum. Hence,

sy ([ s

(k,1)<(4,5) <(o0,00)

dV'(z(k,1),u,w) =

{% w:*(z‘,j)] dAT (i, 4)+
{% - A(i,j)} dm(i,j)} (17)

Equation (17) yields (10) ~
marks.

(12), with the following re-

1) Increments du(i,j), dw(i,j), dz(i,5), and dA(i, ),
with the exception of d2"(0,j) and dz" (¢, 0), are indepen-
dent arbitrary vectors.

2) dz"(0,5) = 0 and dzV(:,0) = 0, since z"(4,) and
z"(i,7) are fixed boundary conditions. a

According to (12), the optimal control w*(k,l) and
w*(k,l) can be expressed as

u' (k1) = —%R*BTA*(k,Z) (18)
and
w*(k,1) = —%S—ICT,\Wg, ) (19)

Theorem 2. For system (1) with respect to the perfor-
mance index function (6), if the controls u(k,!) and w(k, )
are expressed as (18) and (19), respectively, then the opti-
mal Hamilton function (13) satisfies a certain Riccati func-
tion.

Proof. For the zero-sum games of 2-D linear system,
the optimal state feedback control should also be linear
depending on the system state. As the system function is
time-invariant, there exists matrix P that satisfies

Ak, 1) = 2Pz (k, 1) (20)
Then, (18) and (19) can be rewritten as

u*(k,1) = =BT P(Az(k,l) + Bu(k,1) + Cw(k,1)) (21)
and

w*(k,l) = —CTP(Az(k,1) + Bu(k,l) + Cw(k,1)) (22)

So, the optimal state feedback controls u(k, ) and w(k, )
can be expressed as

u*(k,))=—R+B"PB-B"PC(S+C"PC)"'C"PB) "' x
(B"PA - B"PC(S+ C"PC) ' CTPA)x(k,1) (23)
and

w* (k,1)=—S+CTPC-C"PB(R+B*PB) 'BTPC)™'x
(C"PA—-CT"PB(R+ B"PB) 'BTPA)x(k,1) (24)

According to (11), we have

2Px(k,1) =2Qzx (k1) + 2A" Px* (k,1) =
2Qx(k,1) + 2AT P(Az(k,1) + Bu* (k1) +
Cw* (k,1)) (25)

Substituting (23) and (24) into (25), we have the follow-
ing Riccati function

P=Q+ A"PA—-A"PB(R+ B"PB - B"PC(S+
c"pPC)'C"PB) 'B"PA+ ATPB(R+ B*PB—
BTPC(S+CcTPC)'CTPB) BT PC(S+
cTpPey 't PA - ATPC(S +CTPC — CTPBx
(R+B™PB) 'BTPC) 'CTPA+ ATPC(S+
Cc"PC -C"PB(R+B"PB) 'B"PC)'CTPBx
(R+BT™PB)"'BTPA (26)

0
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As the zero-sum game has a saddle point and is solv-
able, in order to obtain the unique feedback saddle point in
the class of strictly feedback stabilizing control policy, the
following inequalities should be satisfied!®!

P>0 (27)
S+CTPC <0 (28)
and
R+B"PB>0 (29)

Theorem 3. For system (1) with respect to the perfor-
mance index function (6), if the optimal controls w* (k,)
and w*(k,l) are expressed as (18) and (19), respectively,
then the optimal performance index function V*(z(k,1)) is
a quadratic function depending on state z(k,1).

Proof. Substituting (18) and (19) into the Hamilton
function (13), we have

H(k,1) :xT(k,l)Qw(k,l)+i)\+T(k,l)BR_1BT,\+(k,l)+

i)\”(k, DCSTTCTNT (ke 1)+ AT (K, 1) (Az (k1) —

SBRTBIN (D)~ LOSTICTAT (k1) (30)

Then, according to (20), (23), and (24), we have

H(k,1) =z" (k,1)(Q + A"PA— A"PB(R+ B"PB—
BTpPC(S+cTPC) 'cTPB) 'BTPA+
ATPB(R+ B*"PB - BTPC(S +CTPC) ™' x
CcTPB)'BTPC(S+CTPC)'CTPA-
ATPC(S+C"PC - CT"PB(R+ BTPB) 'x
BTPC)'CTPA+ ATPC(S +CTPC—
CT"PB(R+ B"PB) 'B"PC) 'CTPBx
(R+ B"PB) 'B"PA))z(k,1) (31)

According to (26) and the optimality principle, we im-
mediately have

H(k,1) =" (k, ) Px(k,1) = V*(x(k,1)) (32)

So, V*(z(k,1)) is a quadratic function depending on state
z(k,1). O

According to Theorem 3, we have the following corollary.

Corollary 1. For system (1) with respect to the perfor-
mance index function (6), if the controls u(k, ) and w(k,1)
are expressed as (18) and (19), respectively, then the sys-
tem is stable.

Proof. According to the definition of the performance
index function in (8), let (k,I) — (00, 00), and we have

V*(z(00,0)) =H (00, 00) =
2" (00, 00)Qz (00, 50) + u* T (00, 00) x

Ru* (00, 00) +w* T (00, 00) Sw* (0, 00)
(33)

On the other side, according to (13), let (k,1) — (00, 00).

Then, we have

H(00,00) =z (00, 00)Qx (00, 00) + u*T (00, 00) x
Ru* (00, 00) +w™ (

AT (00, 00) (AZ (00, 00) + Bu(oo, 00)+

Cw(00,00)) (34)

00, 00)Sw™ (00, 00)+

According to (20), we have
H (00,00) =z (00, 00)Qz (00, 00) + u*T (00, 00) X
Ru* (00, 00) 4+ w™* " (00, 00)Sw* (00, 00)+
(Az(c0, 00) + Bu (oo, 00) + Cw (oo, 0)) " x
2P (Az (o0, 00) + Bu(co, 00) + Cw(oo, 00))
(35)
Then, we have

(Az (00, 0) + Bu(co, 00) + Cw (oo, 00)) " x
2P(Az (00, 00) + Bu(co,0) + Cw(co,0)) =0  (36)
As the optimal controls u*(k, ) and w* (k, 1) are the state

feedback controls expressed in (23) and (24), respectively,
and P > 0, we can obtain

(k,lll)Toox(kJ) =0 (37)

d

2.2 Data-based optimal control using adaptive
critic designs

In [36], the zero-sum games for 1-D system were dis-
cussed based on dynamic programming principle. In this
paper, based on the optimality principle, we will expand
the method into 2-D systems.

As the optimal controls 4™ and w* are both linear feed-
back depending on the state, let

u*(k,l) =K z(k,1)
w* (k1) =L z(k,1) (38)
and let

H(z(k,l),u(k,l),wk,!)) =

z(k,1)
(2" (k1) uw"(k,1) w' (k)] H| ukl) (39)
w(k,l)
Then, according to (13), we have
Heo How How] [QO0 *
Hys Hyw Hyw | =| 0RO |+ | K*AK*BK*C Hx
Hus Huuw How| |008] | LA L*B L*C
[ A B C
K'AK*BK*C | =
| L*A LB L*C
[ATPA+Q ATPB ATpC
B™PA BTPB+R BTPC
ctrA ctpB CTPC+ S
(40)
I
where P = [IK*T L*T] H| K*
L*
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According to (12) and (40), we have A B c"
[T (k, D) ui (k,)w! (k)] | KKAK:BK,C| Hx
_OH(k, 1) LiA LB LC
Ou k1) A B C x(k, 1)
0= QHWx(k, l) + 2Huw'w(k, l) + 2Huu'u,(k, l) (41) K,AK:BK,C (k, ) (47)
and LiA LiB L;C | | wi(k,l)
_ OH (k,1) Then, according to (43) and (44), the iterative control
ow(k,l) laws can be expressed as

0 =2Hupa(k, 1) + 2Huwuu(k, 1) + 2Howw(k, 1) (42)
Substituting (42) into (41), we can get

w (k1) = (Huu —
(H’LL’LUHUT;LHMI - Huz

HuwH o Huu) ™!
)z (k, 1) (43)
Taking (43) into (42), we can get

)
w (k1) = (Huww =
(

H’w u;L -

kuHuu Huw)
M)x(k, l) (44)

So, we have

K* = (Huyu — HuwHepoy Huw) ™ (Huw Hooy Huww — Hua)
(45)
and
L* = (wa - kuH;ulHuw)il(kuH;L}Huz - Hw:v)
(46)

3 Data-based iterative ACD algorithm

Although we have obtained the optimal control pair ex-
pressed in (45) and (46) with the information of the matrix
H, we can see that the matrix H in (40) is also unsolv-
able directly. Therefore, an iterative ACD algorithm is
proposed in this suction and the convergence property is
also discussed.

3.1 The derivation of data-based iterative ACD
algorithm

We propose the iterative ACD algorithm for zero-sum
games of 2-D systems in this subsection.

We start with an initial Hamilton function Hy(k,1) = 0,
which is not necessarily optimal, and then we obtain the
function H;(k, 1) for solving the following equation with the
iteration performance 7 > 0:

z(k,1)
[T (k, ) u" (k,)w" (k,1)] Hiz1 [u(k,1) | =
w(k, 1)
Q00
minmax? [z" (k, 1) u" (k, ) w" (k,1)] | 0RO | x
o 00S
z(k, 1) A B c1"
u(k,l) | + [T (k,)uw" (k,)w"(k,1)] | KAKBKC
w(k, 1) LA LB LC
A B C z(k,1)
H;x | KAKBKC| | u(k,l) =
LA LB LC | | w(k,1)
Q007 [ z(k 1)
[2" (k1) u (k,)w] (k,1)] | 0RO u;(k, 1) | +
00S| | wik,1)

Ki = (szj,u - H’liw(H'li)w)_lH'l’iJu)_IX

and

Li = (Hyy — Hyu(Hu) ™ Hyw) ™'
(Hipu(Hia) ™ Hipy = Hi) (49)
Then, iterative controls are
u;(k, 1) = Kz(k,l) (50)
and
w;(k,l) = Lixz(k,1) (51)

As we can see that the iterative control laws K; and
L; can be updated by the H matrix without the system
information. While the iteration of P; changes into the
iteration of H;, the property of the iteration H, should
be discussed. So in the followings, the convergence and
optimal properties are proposed. Also, we will show that
the iteration of P; is the same as the iteration of H;.

3.2 The properties of data-based iterative ACD
algorithm

In this subsection, the convergence analysis is conducted
for the data-based iterative ACD algorithm to guarantee
the iterative control pair converges to the optimum. First,
we give the following lemma that is necessary for the proof.

Lemma 1%, The matrices Hit1, K;, and L;+1 can be
expressed as

ATPA+Q APB ATP,C

H.w=| BT™A BTPB+R BT™PC (52)

CTPA cC™PB CcT'pC+ S
Kiy1 =—(R+B"P,B-B"PC(S+CTPC)'CTP,B)!
(B"P,A— BTP,C(S+CTP,C) 'CTPA) (53)
and

Liy1 =—(S+CTPC—-C"P.B(R+B"P,B) 'BTP,C)™*
(CT"PA-CT"P.B(R+ B"P,B) 'B"P,A) (54)
where P; is given as
I

P=[IK'LT|H: | Ki (55)
L;
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Proof. According to (47), we have

T

Q00 A B C A B C
Hiy1=| 0RO |+| KiAK;BK,C | H; | K;iAK;BK;C |=

0058 L;A L;B L;C L;A L;B L;,C

Q00 AT I

ORO|+ |B" | [IKILT|H; | K] | [ABC]

008 c” Lt

(56)
Substituting (55) into (56) yields
ATPA+Q ATPB ATp.C

Hi1=| BT™PA BTPB+R B'PC (57)

c'pA  C'PB C'RPC+S
According to (23) and (45), we have

K;=—(R+B"P,B-B"P,C(S+C"P,C)"'C"P,B) "' x
(B"P,A—-BTPC(S+CTP,C) 'CTRA) =
(H;ufH;w(Hfuw)ileuu)il(H;w(H:uw)ilH:ux7H1ch)

(58)

According to (24) and (46), we have

Li=—(S+C"P,C-C"P,B(R+B"P,B) 'B"P,C) 'x
(C"PA-CT"PB(R+B"P,B) 'BTP,A) =
(59)

Lemma 2. Iterating on H; is similar to iterating on 151'

as

Pi1=Q+A"PA-—A"PB(R+B"P,B—- B"P,C(S+
c'pC)y 'c"P,B) 'B"P A+ ATP,B(R+
B'"P,B-B"PC(S+C"PC)"'C"P,B)"'B" x
PC(S+CTPC) 'CTPA- ATPC(S 4+ CTPC—
C'PB(R+B"P.B) 'B'PC)'CTPA+
ATP,C(S+C"PC - C"P,B(R+ BT"P,B) 'B"x
P.C) 'C"P,B(R+ B"PB) 'BTP,A (60)

where P; is defined in (55).
Proof. From (55), we have

1
Pipr = [T Ky Ly | Higr | Kipa (61)
Lig1
Taking (52), we can obtain
Pi.»,_l = [I KiTJrl L;[;Ll} X
ATPA+Q ATPB ATpPC I
BTP,A B™PB+R BTRC Kit1

cTpA CT™PB CTPC+S|| Li+1

Substituting (53) and (54) into (62), we have

Piy1=Q+ A"PA— A"PB(R+B"P,B— B"P,C(5+
CcTPC)'C"P,B) 'B"PA+ ATP,B(R+
B"P,B-B"PC(S+CTPC)'CTP,B) ' BT x
PC(S+CTPC) 'CTPA - ATPC(S+
c'pP,C - C"PB(R+B"P,B) 'BTP,C)'CT x
PA+ATP,C(S+C"P,C —C"P,B(R+ B"P;x
B 'B'P,C)"'C"P,B(R+ B"P,B)"'B"P,A

(63)
0
From Lemma 2, we have
z(k,1)
z" (k1) Pix(k, 1) = [2"(k, 1) ul(k, 1) wi(k, 1) ]H; ui(k,l)]
w;(k,1)
(64)

Then, (47) can be expressed as

Hipa(k, 1) = [27 (k1) uf (k1) w] (k,1)] x

QO00][ =k, 1)
0RO || ui(k, 1) | + Hf (k,1) =
005 || wik,1)
(27 (k,1) uf (k1) w} (k,1)] x
QOO0 =k, 1)
0RO || uwi(k,l) | + 2 (k, )Pz (k,1)
0058 || wilk,1)
(65)
where
A B c]"
H (k1) = [2"(k, ) uf (k, 1) wi (k,1)]| KiAK;:BK;C| x
L;A L;B L;,C
A B C z(k, 1)
and
z(k,l)
Hipa(k, 1) = [&7 (k, 1) ui (k, D) w] (k)] Hiv1 | ui(k, 1)
wl(k,l)

Theorem 4. For the 2-D system (1) with respect to
the performance index function (6), if the saddle point ex-
ists under the state feedback controls u(k,l) and w(k,1),
respectively, then the iteration on (47) will converge to the
optimal performance index function.

Proof. In [6], it was shown that the iterating algebraic
Riccati equation (63) is convergent, for ¢ — oo with Py = 0.
So, let lim; o P; = P*. Then, for i — oo, we have

u(k,l) =
—(R+B"P*B-BTP*C(S+CTP*C)"'C"P*B) ' x
(B"P*A—-BTP*C(S+CTPC)'CT P A)x(k,1) (68)
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and
w(k,l) =
—(S+CcTPCc-C"P*B(R+B"P*B) 'BTP*C) ' x
(CT"P*A—-C"P*B(R+ B"P*B) 'B"P*A)x(k,1) (69)

where P* satisfies the algebraic Riccati equation (26).
According to Theorem 1, the controls u(k,!) and w(k,!)
in (68) and (69) are both optimal. So, we have

V(@ (k1)) =z (k)P z(k,1) (70)

On the other side, according to Lemma 1, we have

ATPA+Q ATPB ATPC
B™Pp,A BTPB+R BTPC |=
CTPA CcTPB CTPC+ S

ATP*A+Q ATP*B ATp*C
BTpP*A BTP*B+ R BTP*C
CTprA cTp*B CTpPC+ S

lim Hi+1 = hrn

71— 00 71— 00

(71)
So, we can obtain
ATP*A+Q ATP*B ATpC
BTP*A BTP*B+R BTPC (72)
CTpP*A ctp*B CTP*C+S

H¢H

as ¢ — 00. (]

In the iterative ACD algorithm, the Hamilton function
H (k,1) is generally difficult to obtain. Therefore, a pa-
rameter structure is necessary to approximate the actual
Hj' (k,1). In this paper, a neural network called critic net-
work is adopted to approximate H;'(k,l). Similarly, we
adopt two neural networks (called action networks) to ap-
proximate the controls u(k,!) and w(k,[), respectively. Let
the output of action networks be expressed by

ai(k,1) = Kz (k,1) (73)
and
’12)1‘ (k7 l) = Li.'c(k, l) (74)

The output of critic network is expressed by

28 (k,1)Hizi(k,1) = ¥z (75)

where z;(k,l) =
Rn1+n2+m1+m2=q7

[ (k, Dl (k. Dwl (kD] zi(k,1) €

zZi = (2%7 R1%22, """, Z1%q, 237 R2Z3, "
Z2Zq, 7,z'q,1,7.'q,;.'§) is the Kronecker product quadratic
polynomial basis vector™)| and h = v(H) with v(-) be-
ing a vector function that acts on ¢ X ¢ matrix and gives a
[¢(¢ + 1)]/2 x 1 column vector.

To solve Hiy1(k,1), the right side of (65) can be written
as

d(zi(k,1), Hi) = [2" (k, 1) ui (k, 1) wi (k,1)] x

Q007 [ =(k,i)
0RO | | wi(k, )| +H (k1) (76)
0058 | wik,0)

which can be regarded as the desired target function satis-
fying
hizi(k, 1) = d(zi(k, 1), H;) (77)

So, we can obtain
hiv1 = (2i(k,D)zi (k, 1) 2i(k, Dd(zi(k, 1), Hy)  (78)

Remark 1. In (78), we can see that the matrix
Zi(k,D)Z] (k,1) is generally invertible. To overcome this
problem, two methods are proposed. First, we can com-
pute (2:(k,1)zT (k,1))™" by the Moore-Penrose pseudoin-
verse technique®®!, where zi(k, D)z} (k,1) # 0, for Vk, 1. Sec-
ond, we can use the least-squares technique to obtain the
inverse of matrix z;(k,1)z7 (k,1). In this paper, we adopt
the second method.

To implement the least-squares method, white noise is
added into the controls (50) and (51), respectively. Then,
we have

u;(k,l) = K;z(k, 1) + &, (79)
and

w;(k,l) = Lix(k, 1) + &, (80)
where €,(0,0%) and £,(0,0%) are both zero-mean white

noise with variances o and o3, respectively. So, z;(k,1)
in (75) can be written as

z(k,l) z(k,1) z(k,1) 0
él(kJ): ﬁl(kvl) = ui(kvl +£1 = ul(kvl) + &1
wi(k,1) wi(k, 1) + &, wi(k, 1) £
(81
Evaluating h;y1 at N points p1,p2,--- ,pn, we have
hivi=(ZNZN) ' ZNY N (82)
where
Zn = [Z(p1) Z(p2) -+ Z(pn)] (83)
and

Yx =[d(z(p), Hi) d(z(p2), Hi) -+

Then, we can obtain
Hit1 = g(hit1) (85)

through the Kronecker method and the feedback control
laws K;+1 and L;+1 can be obtained according to (48)
and (49), respectively. According to the condition of the
least-squares solution, the number of sampling points N
should satisfy the following inequality.

N2 3 (20% 20+ 1) (56)

The least-squares method in (82) can be solved in real-
time by collecting enough data points generated from
d(zi(k,1), H;) in (76). What we require to know is the state
and control data xz(k,l),u;(k,l),wi(k,1), and H; (k,1).
Therefore, in the proposed iterative ACD method, the
model of the system is not required to update the critic
and the action network.

3.3 Summarization of data-based iterative ACD
algorithm

Given the above preparation, now the data-based itera-
tive ACD algorithm proposed in this paper is summarized
as follows:
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Step 1. Give the boundary condition 2"(0,1) = f(I) and
z¥(k,0) =g(k). Let Po =0, Ko =0, and Lo = 0. Give the
computation accuracy e.

Step 2. According to the N sampling points, compute
Zy and Yy according to (83) and (84).

Step 3. Compute h; according to (82) and H; according
to (84) through the Kronecker method.

Step 4. Compute the feedback control laws by

Ki+1 = (H;u - Hiiw(Hi)w)ileuu)il X

(Hoo (Hipw) ™ Hopo = His) (87)
and
Liv1 = (Hyy — Hyu(Huy) ' Hyy) ™' x
(Hopu(Hin) ™ Hup = Hip) (88)
Step 5. If
| hivr —hi[<e (89)

exit; otherwise, go to Step 6.
Step 6. Set i =i+ 1, go to Step 2.

4 Neural network implementation

In this subsection, neural networks are constructed to
implement the iterative ACD algorithm. There are several
ACD structures that can be chosen?”. As HDP structure is
basic and convenient to realize, we will use it to implement
the iterative ACD algorithm.

Assume the number of hidden layer neurons is denoted
by [, the weight matrix between the input layer and hidden
layer is denoted by V, and the weight matrix between the
hidden layer and output layer is denoted by W. Then, the
output of three-layer neural network is represented by

FX,V,W)=W"e(VTX) (90)
where (VTX) € R, [o(2)]: = ezi_ie:,i =1,---,l, are
e%i + e~

the activation function.
The neural network estimation error can be expressed by

FX)=FX,V"W") +¢(X) (91)

where V* and W™ are the ideal weight parameters, and
€(X) is the reconstruction error.

Here, there are three neural networks, which are critic
network, action network u, and action network w. All the
neural networks are chosen as three-layer feedforward net-
works. The whole structure diagram is shown in Fig. 1.
The utility term in the figure denotes x* (k,1)Qz(k,1) +
uT(k, D) Ru(k,1) + wT (k,1)Sw(k,1).

//
Critic
etwork
N )
Action | u(k]) ’ |
network
x(k]) ; Unknown [¥06)| - Critic
\
;\ " wikd) plant network
‘Action |\
ne‘tv\vork wl\
N e e e e
\\,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,J
Fig.1 The structure diagram of the algorithm

4.1 The critic network

The critic network is used to approximate the Hamil-
ton function H(k,l). The output of the critic network is
denoted as

Hi(k,1) = Weio (Vaiz(k, 1)) (92)
The target function can be written as

Hia(k,l) =H] (k, D)+

Q
[z (k, 1) w! (k1) wi(k,1)]| O
0

Then, we define the error function for the critic network
as

eci(k,1) = Hip1(k, 1) — Hipa (K, 1) (94)
And, the objective function to be minimized in the critic
network is

Eei(k,l) = %efl-(k,l) (95)

So the gradient-based weight updating rule®” for the
critic network is given by

We(irn) (k1) = wei(k, 1) + Awei (k, 1) (96)
B OEci(k,1)

Awe; (k1) = ac {—W} (97)

OEci(k,1) _ 0Eci(k,1) 0H.(k,1) (98)

Owei(k, 1) 9H;(k,1) Owei(k,1)

where a. > 0 is the learning rate of critic network and
we(k, 1) is the weight vector in the critic network.

4.2 The action networks

Action networks are used to approximate the iterative
optimal controls. There are two action networks, which
are used to approximate the optimal controls u and w, re-
spectively.

For the action network that approximates the control
u(k, 1), state z(k, 1) is used as the input to create the opti-
mal control and u(k, 1) is used as the output of the network.
The output can be formulated as

'&z(k’l) = W(;[;O'(V(Z‘Z(k,l)) (99)

So, we can define the output error of the action network
as
eai(k,l) = 0 (k, 1) — us(k, 1) (100)
where u;(k,[) is the target function that can be described
by
wi(k, 1) = (Hipw = Hop(Hin) ™ Hopw) ™' %
(Hipu(Hy) ™ Hiyy — H)z (K, 1) (101)

where H; can be obtained according to Kronecker product
in (85).

The weighs in the action network are updated to mini-
mize the following performance error measure:

1

Eai(k, 1) = 5e§i (102)
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The weight updating algorithm is similar to the one for with the boundary conditions
the critic network. By the gradient descent rule, we can
obtain 2(0,1T) = { Mo = e kx0) = { bors
Wagit1) (k1) = wai(k, 1) + Awai(k, 1) (103) S k>
(111)
OE ( k l) and the discredited performance index function as
Awai(k,1) = fa {_awai(kl)} (104) s oo
o V= {Q2*(Xk, Tl) + Ru®(Xk, Tl) + Sw*(Xk,T1)}
k=0 1=0
ai (K, ai (K, ailFR, i 112
OFq.i(k,l)  OFai(k,l) Oeqi(k,l) Oui(k l; (105) (112)

Owai(k, 1) Oeai(k, 1) Owilk,l) Owai(k,1)

where (3, > 0 is the learning rate of the action network.

For the action network w that approximates the control
w(k,l), state z(k, 1) is used as the input to create the opti-
mal control and w(k, ) is used as the output of the network.
The target of w action network can be expressed as

Wik, 1) = (Hipw — Hip (Hiw) ™ Hi) ™' X

All the update rules of w action network are the same as
the update rules of u network and it is omitted here.

5 Simulation

In this section, the proposed method is applied to an air
drying process control. Our example is a modification of
Example 1 in [40] and extends the variable space to the
infinite horizon.

The dynamical processes can be described by the follow-
ing Darboux equation:

&x(s,t Oz (s,t dx(s,t
) g o) D
bu(s,t) + cw(s,t) (107)
with the initial and boundary conditions
h 05, t<4 v 1, s<4
x(07t)_{07 t>4 ,ZE(S,O)—{07 s> 4 (108)

where z (s, t) is an unknown function, ao, a1, az, b, and c are
real coefficients, u(s,t) and w(s,t) are the input functions.
The variable x means the humidity, which is the system
state, s means the location of the air, and ¢ is the processing
time.

Let ap = 0.2, a1 = 0.3, az = 0.1, b = 0.3, and ¢ = 0.25.
The quadratic performance index function is formulated as

v=/t:0 /s:o {Qa*(s,t)+ Ru’(s, t)+Sw?(s,t)} dsdt
(109)

The discretization method for system (107) is similar to
the method in [40]. Suppose that the sampling periods of
the digital control system are chosen as X = 0.1cm and
T = 0.1 s. Following the methodology presented in [40], we
can compute the discretized system equation (1) as

2 D5 = [t ana] [ em] +

0.0259
0

0

} x u(kX,IT) + [0 0564

} w(kX,1T)
(110)

We implement the iterative algorithm at (k,1) = (0, 0).
We choose three-layer neural networks as the critic net-
work, the action network u, the action network w with the
structures 2-8-1, 2-8-1, and 2-8-1, respectively. The initial
weights of action networks and critic network are all set
to be random in [—0.5,0.5]. Then, the critic network and
the action network are trained for ¢ = 50 times so that
the given accuracy ¢ = 107° is reached. In the training
process, the learning rate 8, = a. = 0.05. The evaluating
point number N = 40 for every iteration and choose the
small white noise as £(0,0.01) and £2(0,0.01). The con-
vergence curve of the performance index function is shown
in Fig.2. Then, we apply the optimal control to the sys-
tem for k = 40, [ = 40 time steps and obtain the following
results. The state trajectories are given as Figs.3 and 4.
The control curves are given as Figs.5 and 6, respectively.

08
207

£
506

e
05
L

3
£0.4
3

203

g
S
502

£0.1

0 10 20 30 40 50
Iteration step

Fig.2 The convergence of performance index function

Fig.4 The state variables zV trajectories
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0.1
0.05

(k)

-0.05
0.1
100
g0 100

40
i oo 20 k

Fig.5 The optimal control u trajectories

0.04
0.02

w(k,l)
f=]

-0.02
-0.04

-0.06
100

Fig.6 The optimal control w trajectories

From the simulation results, we can see that the pro-
posed iterative ACD algorithm in this paper obtains good
effects. In [40], Tsai just studied the model-based optimal
control in the finite horizon. In this paper, using the iter-
ative ACD algorithm, the optimal control scheme for 2-D
system in the infinite horizon can also be obtained without
the system model. So the proposed algorithm in this pa-
per is more effective than the method in [40] for industry
process control.

6 Conclusion

In this paper, we proposed an effective iterative algo-
rithm to find the optimal controller of a class of discrete-
time two-person zero-sum games for Roesser types 2-D sys-
tems. The proposed ACD algorithm allows to be imple-
mented without the system model. Stability analysis of the
2-D systems was presented and the convergence property of
the performance index function was also proved. The simu-
lation study has successfully demonstrated the upstanding
performance of the proposed optimal control scheme for the
2-D systems.
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