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Abstract In networked control systems (NCSs) with resource
constraints, there is an unavoidable tradeoff between the con-
trol performance and the quality of service. To address these
problems, we present multi-objective programming with a set
of constraints to optimize control performance and bandwidth
consumption for the first time. Thanks to robust nonlinear ap-
proximate function and computational cost, a feed-forward neu-
ral network as optimal approximator is employed. The role of
the neural network, which provides a good approximation to the
optimal solution, dynamically allocates the bandwidth of each
control loop so that the overall system performance is maxi-
mized while bandwidth consumption is minimized. Preliminary
simulation results show that the proposed optimal strategy is an
effective tradeoff method between the control performance and
bandwidth consumption in networked control applications.
Key words Networked control systems (NCSs), bandwidth
scheduling, multi-objective programming, neural network (NN),
optimization

Networked control systems (NCSs) are typically spatially
distributed systems, in which the communication between
sensors, actuators, and controllers occurs through a shared
resources-limited communication network!* ™%, These dis-
tributed systems, which may operate in an asynchronous
manner, have their operation coordinated to achieve de-
sired overall objectives. Compared with the conventional
control systems, in which the components are connected
via hardwired connections, these distributed systems where
information can be transmitted reliably via shared net-
works or even wireless connections have caused two main
changes in control system analysis and design. The first
has to do with the explicit consideration of the intercon-
nections. The second change has to do with a renewed em-
phasis on distributed control systems[4]. To attack these
issues, there are various methodologies from different per-
spectives. One fashionable way is to adopt a suitable con-
trol technique, which can compensate time delay induced
by network(®°=% . Another effective way is to schedule and
optimize the sharing resources, including CPU resources
and bandwidth resources, in order to achieve desired over-
all objectives.

In many application areas, maximizing control perfor-
mance while exploiting the available network bandwidth
as low as possible is crucial, especially for an NCS with
resource constraints. Most traditional resource manage-
ment techniques are based on static resource allocation.
The control system is shared by all nodes according to the
pre-established allocation strategies regardless of the dy-
namic control process at runtime!”. These static strategies,
namely fixed bandwidth allocation (FBA) in this paper,
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work well because they guarantee a constant bandwidth to
share for each control loop, allowing it to meet given control
performance specifications. The issues of these allocation
methods have gained considerable research attention, as re-
ported in [8—11] and therein references.

However, at a close look at the behavior of control loops
and the relationship between control performance and re-
quirement of bandwidth, these static strategies may not
be optimal for an NCS with bandwidth constraints. For
many networked control applications, the desired overall
objective is usually to pursue the result that the system
performance is maximized while bandwidth consumption is
minimized. A scheduling algorithm (thus resources alloca-
tion) is said to be optimal if it minimizes or maximizes some
given performance measure functions defined over NCS!*2l,
It is a natural extension issue to select feasible schedule sets
and objective functions, which can optimize overall perfor-
mance. Generally speaking, the optimization is usually a
multi-objective mathematical programming with a set of
constraints. Consequently, there is an unavoidable tradeoff
between the control performance and the quality of ser-
vice in networked control systems. In [12—13], each NCS
was assumed to be associated with a performance mea-
sure function subject to rate monotonic (RM) schedulabil-
ity constraints and NCS stability constraints, and the opti-
mal sampling periods were found by using Matlab function
“fmincon”. This optimal technique is still a fixed resource
allocation in spite of improved control performance.

In recent years, it has been reported that the bandwidth
resources are allocated dynamically by varying sampling
period of control loops (thus their bandwidth consump-
tion). One of the reasons may be the limited bandwidth or
the different communication capability of each control loop
within multi-loop NCS. Another reason may be resource
optimization so as to dynamically adjust the sampling pe-
riod. Consequently, the key of these novel methods is to
sufficiently utilize the sharing resources and effectively im-
prove the control performance (see examples in [7,14—16]).
The algorithm proposed in [15] adopts an extending state-
space model and uses an exponential function to dynam-
ically allocate available bandwidth. However, this strat-
egy is not an optimal technique because the control perfor-
mance depends on selecting model and adjusting the crit-
icalness parameter. In [7,16], considering single optimal
objective of control performance subject to global available
bandwidth, the suggested optimal problem solved by linear
programming technique was also simplified. These dynamic
allocation strategies employ limited bandwidth to dedicate
themselves to improve control performance as mentioned
above.

Taking these observations as a baseline for our current
work on optimizing overall performance and bandwidth
consumption, we present a multiple objective optimiza-
tion (MOO) technique to maximize overall system perfor-
mance and minimize the bandwidth consumption for the
first time. A neural network (NN) as a good and robust
nonlinear function approximator is employed. The optimal
algorithm, combining with expert knowledge expressed as
rules, is used as a teacher to label the data samples for the
NN well-trained offline. Consequently, the NN is employed
to allocate resources at runtime based on feedback infor-
mation, i.e., state error. This mechanism can maximize
control performance and minimize bandwidth consumption
simultaneously.
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1 System architecture and problem de-
scription

In the system considered in this work as shown in Fig. 1,
there are n control loops that share the control network to-
gether with other non-control applications. The bandwidth
manager based on an optimal NN can be embedded in con-
troller node so as to manage bandwidth locally at runtime
according to communication data fed back from the control
network. All actuator nodes and controller nodes are event-
triggered, and all sensor nodes are time-triggered. Informa-
tion gathered using the network is easy to realize in some
multi-point communication systems, i.e., CAN bus. For
each control loop, it is assumed that the required messages
to carry out all sensor-controller-actuator transaction be
finished within each sampling period (i.e., deadline is equal
to the sampling period). And it is also assumed that the ar-
chitecture is based on a real-time network that guarantees
all the deadlines upon any bandwidth allocation among all
control loops.

' b,
Optimal 1 71,|  Control
loops

neural network : (h)

Non-control
applications

State
feedback

Control
network

State error

Dynamic bandwidth
manager

Fig.1 The multi-loop of NCS based on optimal NN
bandwidth management

The linear time invariant system model of the i-th control
loop is given by

{ a:l(t) = Ai(l?i(t) =+ Biui(t)

1
y,;(t) = Cimi(t), W

i=1,---,n

where u;(t) is the control input, A;, B;, C; are matri-
ces with appropriate dimensions, and the vector z;(t) =
[F(t), - ,x™(t)] is the state of the system at time ¢, and
its elements are called state-variables (we assume full state
availability).

The proposed method in this paper, namely, MOO as
mentioned above, tries to maximize control performance
and minimize bandwidth consumption. Dynamic band-
width manager adjusts the next sampling period (h;) of
each control loop according to the state-variables fed back
from network. Therefore, the relation between bandwidth
and sampling period for each control loop is given by

Ci

bi = 7 (2

where b; is assignable partial bandwidth to the i-th control
loop, and ¢; is the time spent on the messages required
to perform each closed loop operation (which may include
communication data exchanged from sensor to controller
and from controller to actuator, as well as the time spent
on executing the controller)*5=16],

By assuming c¢; in (2) constant, any change on b; will
directly imply a change on h; (and vice versa). Henceforth,
either b; or h; will be used to denote bandwidth (or sam-
pling period). Without loss of generality, we assume that
the equilibrium point to be zero. The Euclidean norm of

the state vector, also called error, is defined as

ei = [lzi(8)]] ®3)

Dynamic bandwidth manager based on MOO strategy
obeys the following rationale: when a control process is af-
fected by perturbations so as to deviate its equilibrium, an
optimal magnitude b; will hasten system recovery. How-
ever, when a control process tends to the neighborhood
of equilibrium, i.e., small e;, bandwidth manager should
distribute optimal minimum magnitude b; to the relevant
control loop.

2 Optimal bandwidth management
2.1 The boundaries of bandwidth allocation

In feedback control systems, it is important that sam-
pled data should be transmitted within a sampling period
in order to guarantee stability of control systems. While a
shorter sampling period is preferable in most control sys-
tems, it can be lengthened up to a certain bound within
which stability of the system is guaranteed in spite of the
performance degradation. This certain bound is called a
maximum allowable delay bound (MADB)™!. In addition,
the MADB depends only on parameters and configurations
of the given plant and the controller. It is noted that the
MADB can be obtained from the plant model independent
of network protocols. Thus, MADB can be treated as the
upper bound of sampling period*?>17—18],

Let control law be u = —K;x;; (1) can be rewritten as

{ (1) = Aizi(t) + Mizi(t — 71)
zi(t) = ¢;(t), te[-7,0]

where M; = —B; K, ¢,(t) is initial condition, 7; = 77° +
7504+ 75, 0 <7 < Timax < hi, 76, %, 1 are delays of
the i-th control loop from sensor to controller, controller to
actuator, and runtime of controller, respectively. The min-
imum bandwidth of each control loop (maximum sampling

period) can be calculated from Theorem 1.
(19]

(4)

Theorem 1"°!. Assume sampling period of the i-th con-
trol loop to be h;. If there exist matrices with appropriate
dimensions P; > 0, Q; > 0, X, Y;, and Z; such that

II; PM; —-Y;, hAYZ;
MP -V -Q; MMEZ; | <0 (5)
hiZ;A; hiZ; M; —hiZ;
X Y
{ vz } >0 (6)

where Hl = AZTP1 + PIAI + Yl + }/iT + Qz + thl, then the
system (4) is asymptotically stable.

In fact, (5) and (6) are linear matrix inequalities (LMI)
problems. Therefore, minimum b; of the i-th control loop
(maximum sampling period) can be solved by using LMI
toolbox according to Theorem 1. In an NCS, the high sam-
pling rate can increase network load and result in longer
delay of the messages. So the maximum b; (minimum sam-
pling period) must be considered in (7).

bR =Us— > b7, st
=10 i=1
where Uy is a global available bandwidth. Hence, the mini-

mum sampling period of the i-th control loop can be calcu-
lated by (2). Consequently, the boundaries of bandwidth
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allocation should be considered as constraints in order to
guarantee the stability of NCS at the time of allocating
bandwidth dynamically.

2.2 Performance optimization

As mentioned above, the dynamic bandwidth manager
optimizes the overall control performance and bandwidth
consumption by adjusting the sampling period of each con-
trol loop. Generally speaking, this will formulate a mul-
tiple objectives optimization problem with a set of con-
straints since the optimal object is to maximize control
performance and minimize bandwidth consumption. Con-
trol performance can denote a certain performance criterion
(measured using standard quadratic or linear performance
index) so as to evaluate the controlled system response. To
do so, we use the integral of the absolute error (IAE) in-
dex since the aim of controllers is to minimize the error.
That is, there is an inverse relationship between the TAE
index and the control performance, of which better control
performance will correspond to a smaller TAE.

In fact, the relationship between control performance
and a range of allowed periods (i.e., the boundaries of
bandwidth allocation) can be approximated by a linear
relationship[7’ 16,20] ' The cost function is approximated as
J(hi) = a; + Bihi. Given n control loops with allocated
bandwidth vector b = [by, - - - ,b,]T, vector C = [1,--- , 1],
and considering the bandwidth consumption to be min-
imized, the optimal control performance and bandwidth
consumption should solve the problem

) 8

. v Bici
mbln J1 = Z (oci + b

=1
min J, = Z; bi (9)
st. CTb < Uy (10)
B < b, < pRX (11)

where J; and J» denote cost function of control perfor-
mance (measured using IAE index) and bandwidth con-
sumption, respectively. The parameter ¢; is transmission
time, and «; and [3; are specific for each control loop, which
depend on plant and controller. The parameter solutions
can be seen in [16,20] in detail. Note that the constant «;
can be disregarded when the gradient is calculated. Hence,
it is sufficient to estimate the curvature (8;) of the cost
function.

From the solution approach perspective in solving multi-
objective programming, one may present some of the goals
as constraints to be satisfied while the other objectives can
be weighted to make a single composite objective func-
tion. In addition, some approaches (e.g., weighted-sum
approach, utility function approach, and compromise ap-
proach) also can make multiple objectives to a single ob-
jective function so as to be solved by traditional mathe-
matic program tools. For this case, multiple objectives are
weighted to make a composite objective function. Thus,
(8) and (9) can be rewritten as

mbin J:zn:(ai-i- )‘F’Yizn:bz’ (12)
i=1 i=1

where ~; is weight, and selected ~; should make the mag-

Bici
b;

nitude level between Ji and Jz be satisfied. According to

the Karush-Kuhn-Tucker conditions, if b* = [b},--- ,b%]"

is the optimal solution, then
VJb*)+Aa — X+ AC =0
Us=CTb" 20, b7 < by <07,
AMUg—CTb*)=0, A;(bP**—b7)=0, Apys(bf —bP™)=0
A>0, Xa>0, XA 2>0

i=1,-,n

(13)
where VJ is the gradient vector, and A, Ay = [A1, -+, An]7,
Ao = [Ang1, ,)\gn}T is the Lagrange multiplier.

Although there are several techniques to solve such a con-
strained optimization problem, e.g., sequential quadratic
programming method, feasible direction algorithm, and
penalty function method, solving the optimization problem
exactly involves a large amount of computations because an
optimal algorithmic approach often needs to calculate the
gradients or the Jacobian matrix, and a significant number
of iterations.

Moreover, from the experience of applications perspec-
tive, we can use expert knowledge as connotative con-
straints in order to further save bandwidth consumption.
For this case, we employ the rules expressed as: if e; < e,
then by = b™® ¢ = 1,--- ,n. Here, e denotes threshold
at a sufficiently small value for control loop i. Hence, the
multi-objective programming with a set of constraints can
be rewritten as

mbmJ = ; (ai +
s.t. (10) and (11)
bi = b7 if e < e (15)

Bici
b;

) +%§;bi (14)

Obviously, conventional mathematics program methods
actually have difficulty in solving this optimization prob-
lem. Some heuristic optimization algorithms (e.g., genetic
algorithms) may solve the problem above. However, a sig-
nificant number of iterations in solving optimization prob-
lem may not be feasible at runtime, which may introduce
non-negligible overhead because of the computational com-
plexity. To address these problems, we intend to exploit a
simple and effective structure that uses a feed-forward NN
for dynamic bandwidth allocation, demonstrating a novel
application of NN at the same time. The optimal algorithm
combining expert knowledge expressed as rules is used as
a teacher to label the data samples for the NN training.
Once well-trained offline, the NN is used to deliver almost
optimal solution to bandwidth scheduling so that the con-
trol performance of overall system is maximized while the
bandwidth consumption is minimized.

2.3 Optimal scheduling strategy based on NN

Compared with the heuristic algorithms, the feed-
forward-NN-based solutions can be delivered in real-time,
reducing the scheduling overhead. On the other hand,
NN can offer very accurate solutions because of its pow-
erful nonlinear approximation capacities. These attractive
twofold reason makes NN to be used in our optimal band-
width scheduling. A three-layer feed-forward NN (with one
hidden layer) is selected as a universal approximator to
the bandwidth scheduling optimizer (see Fig.2), where s
is number of neurons in the hidden layer, n is number of
elements in input and output vectors. The input vector
P = e, - ,ey] is chosen as the network inputs, where the
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error of each control loop e; is defined in (3), while net-
work output vector Y = [h1,- -+, hy] is the sampling peri-
ods (thus bandwidth). Generally speaking, the appropriate
number of hidden neurons is problem dependent, mainly
determined by the size of the training sets and the num-
ber of input variables. According to our experience and
repetitious simulations, the number of hidden neurons is 7.

Hidden layer Output layer

Input layer

a,=f,(WP+B) a,=f,(W,a,+ B,)

Fig.2 Neural network structure using abbreviated notation

The relationship between network inputs and outputs is
given by

Y = fz(W2f1(W1P + Bl) + Bz) (16)

where W, B; are the weight matrices and bias vectors with
appropriate dimensions, respectively. The activation func-
tions used are the log-sigmoid transfer function fi(-) in the
hidden layer and the linear transfer function f2(:) in the
output layer. As we can see from (16), the computational
complexity of the NN mainly depends on the number of hid-
den neurons and the number of control loop. Once weight
matrices and bias vectors are trained offline, the bandwidth
manager based on NN can distribute the optimal allocated
partial bandwidth to each loop at runtime.

In order to collect data samples for NN training, we im-
plement it by the following steps. Firstly, for a given ap-
propriate e, we can easily obtain portion of data pairs
by employing expert knowledge expressed as rules in (15).
Secondly, to solve the optimal object (14) subject to (10)
and (11), another portion of data pairs can be obtained by
an algorithmic optimization process. Consequently, these
twofold data samples collected are used as optimal solutions
to train and validate the backpropagation (BP) neural net-
work. Ideally, the data sample set for NN training should
cover the whole range of the input in order to capture all
possible scenarios. Before training, the network inputs and
targets should perform certain preprocessing steps so that
they always fall within a specified range. This process can
make neural network training more efficient.

For this work, the BP NN is trained offline using the
Levenberg-Marquardt (LM) algorithm which combines the
filled function method! in order to improve the training
process and its convergence to the global minimum. LM
algorithm is an iterative technique that locates the mini-
mum of a multivariate function, expressed as the sum of
squares of non-linear real-valued functions®?. Since LM
can be thought of as a combination of steepest descent and
the Gauss-Newton method, it may be the fastest method
for training feed-forward networks up to several hundred
weights. During the training process, the LM training al-
gorithm finds one of local minimal points first, the filled
function method finds the point that is lower than the min-
imal point previously found. By repeating these processes,
a global minimal point can be obtained at last. Moreover,
early stopping method is used for improving generalization.
For this technique, the validation set should be representa-

tive of all points in the training set. After it is well trained
in supervised mode, the NN can be used to provide a good
approximation to the optimal solution for real-time band-
width scheduling.

2.4 Notion of mean network utilization

In this subsection, we firstly illustrate the notion of mean
network utilization (MNU) in order to evaluate the band-
width consumption in NCS with variable sampling periods.
The MNU can effectively express the merit of multiple ob-
jectives optimization.

The network utilization factor is defined as U = >, ¢i /hs
in [12], but it aims at invariable sampling period (or band-
width) in n control loops. In order to evaluate the band-
width consumption of n control loops in an NCS with dy-
namic resource allocation, we define MNU as (17). The
integral upper limit could be any time marking the evalu-
ation time interval.

. 1 T C; t
Unm = 2 A T/O hi((t)) d (17)

In (17), ¢; and h; denote transmission time and sampling
period at the k-th sampling instance of the i-th control
loop. Obviously, ¢;/h; is a subsection function. It is also
fixed in each sampling period. By taking into account that
a certain dynamic bandwidth allocation strategy is given
at each sampling period, bandwidth consumption can be
compared when different bandwidth scheduling strategies
are employed.

3 Evaluation

3.1 Simulation setup

We consider an instance of the model (1) for three inde-
pendent Ball & Beam processes, which can be represented
as a linear invariant state-space model given by

:i::{g(l)}z—i—{(l)}m y=[1 0]z (18)

Obviously, the equilibrium position of control system is
original. The disturbing node is used to represent other
classes of non-control applications which share the com-
munication resources. With such a high priority disturbing
node, the utilization of network bandwidth for control loops
is restricted to a certain scale. More details of setup are
that the disturbing node sharing bandwidth is 70 %. Thus,
the global available bandwidth Uy of the three control loops
is 30 %. All the weight coefficients of three control loops of
NCS are set to be the same. The control law is designed
by LQ approach without network. Its matrix coefficient K
is [0.5916 1.2382]. The upper and lower bounds of the
sampling period are 0.5s and 0.2857s inferred by (2), (5),
and (7), respectively.

In order to capture all possible scenarios for three dif-
ferent bandwidth scheduling strategies, we run the control
system for 3200s. At the same time, the random pertur-
bations are generated for each control process with differ-
ent average perturbation intervals. The distance between
two consecutive perturbation intervals in the same system
varies in such a way that the system may be continuously
perturbed or almost never perturbed.

For comparison, three different cases are considered: 1)
fixed bandwidth allocation (FBA), where all control loops
always share the global available bandwidth equally (thus
the same sampling period) regardless of when the pertur-
bations occur; 2) the suggested optimal strategy mentioned
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in [7,16], namely single object optimization (SOO) based
on linear programming technique; and 3) our solution with
MOO.

3.2 Results

Figs. 3 and 4 show the bandwidth occupancies of the con-
trol system with different bandwidth scheduling strategies
within partial runtime, respectively. When three control
loops are affected by respective perturbations, (see the bot-
tom part marked as “Perturbation”), the bandwidth of the
corresponding control loop is allocated dynamically using
the SOO strategy and our proposed MOO strategy, also
shown in the middle part marked “Each loop BW”. The
summation of the bandwidth consumption for three control
loops is changed dynamically according to deviating equi-
librium. The range of bandwidth allocation is from 24 %
to 30 %, shown in two figures. However, for the bandwidth
occupancy using FBA strategy, it always points to 30 % at
all runtime because three control loops always share the
available bandwidth equally.

%

30 Total BW |
\ [\ (\ l \ , AT A A ’\ ’ \ [\ MOO
24 i
Each loop BW

Loop 1

Bandwidth occupancy
|y
<
S
S
(98]

0 20 40 60 80 1 60 120 140

Time /s

Fig.3 The bandwidth consumption of three control loops with
MOO strategy affected by stochastic perturbation intervals

%

ST MWW oo

)
=

2 m—‘ I“ I—I-’II_I EachloopBW
g Loop 1
L | 11] Loop2

§ 0op
g I | Loop 3
é Perturbation
2 Loop 1
Loop 2
- n_rn n M1 — Loop3

0 20 40 60 80 100 120 140
Time /s

Fig.4 The bandwidth consumption of three control loops with
SOO strategy affected by stochastic perturbation intervals

When the MOO strategy is employed, the bandwidth
occupancy of each control loop should be subjected to its
assignable bandwidth resources. When there are no per-
turbations in three control loops, all sampling periods are
always the allowable maximum value, and total bandwidth
occupancy points to 24 %. However, when SOQO strategy is
employed, the bandwidth occupancy points to 30 % in most
runtime. Actually, for this strategy mentioned in [7,16], if

all of the parameters are the same, e.g., the same control
algorithm and plant, all of the available bandwidth will be
assigned to the control loop with the largest error e;. Ob-
viously, this optimal strategy based on linear programming
technique dedicates to optimize the control performance
and neglects to save the bandwidth resources.

For each control loop affected by different perturbation
interval periods T' (thus stochastic perturbation interval is
an integral multiple of T') within runtime, simulation re-
sults show that our proposed solution is highly effective
in improving the control performance while saving band-
width of control network (see Table 1). For the SOO strat-
egy suggested in [7,16], the control performance, i.e., IAE
performance criterion, can effectively improve in contrast
to FBA strategy at different partial runtime. However,
its mean network utilization (MNU) almost equals to the
FBA’s. The respective MNU of FBA and MOO are 30 %
and 29.5%. For our optimal strategy, the MNU is only
24.4%. Tt is evident that the MNU of our proposed method
is lower than FBA's and SOO’s. Meanwhile, its IAE is al-
most equal to the SOQ’s though the values in different per-
turbation interval periods are slightly more or less than the
corresponding value using SOO strategy at relevant partial
runtime, as shown in Table 1 in detail.

Table 1 The IAE and MNU with three scheduling strategies
affected by different perturbation interval periods T  at
runtime, respectively

Run FBA Strategy SOO Strategy MOO Strategy

T

time IAE MNU IAE MNU IAE MNU
10s 120s  18.429 30.0% 16.369 28.6% 16.949 25.3%
20s 300s 15.864 30.0% 14.284 29.5% 13.384 24.5%
30s 400s 15.647 30.0% 13.460 29.7% 13.678 24.4%
40s 480s 11.080 30.0% 10.070 29.7% 10.677 24.2%
50s 500s 9.916 30.0% 9.352 29.8% 9.415 24.2%
60s 600s 10.114 30.0% 9.218 29.8% 9.080 24.2%
80s 800s 13.112 30.0% 11.592 29.7% 12.280 24.2%
Total 3200s 94.163 30.0% 84.344 29.5% 85.462 24.4%

For total TAE, SOO strategy, and MOO strategy are
almost equal to improve control performance in contrast
to FBA strategy. Furthermore, MOO strategy can save
considerable bandwidth resources while SOO strategy can
not (see Fig.5). For our proposed optimal strategy, all
these significant results benefit from multiple objectives op-
timization.

%

120 40
@ Total IAE
_ B MNU
90 __ _ 130
m
=< 60} 120 2
=
é =
30F 110
0 - - - 0
FBA SO0 MOO

Scheduling strategy

Fig.5 The total IAE and MNU using different scheduling
strategies in all runtime
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4 Conclusion

Traditional mathematical programming methods have
difficulty in solving multiple objectives programming with
a set of constraints combining expert knowledge expressed
as rules. Some heuristic algorithms may solve the problem,
which need a large amount of computations. The com-
putational cost may become a bar to networked control
applications.

However, neural network can be employed as optimal
approximator because of its robust nonlinear function and
computational speed. The optimization problem combing
rules can be utilized as a teacher to generate data samples
for NN training. Exactly as what we see, the proposed
strategy can maximize the control performance and mini-
mize the bandwidth consumption. Simulation results prove
that the optimal strategy is an effective tradeoff method be-
tween the control performance and bandwidth consumption
in networked control applications. These proved results are
useful to networked control applications with resource con-
straints.
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