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Gabor Wavelet Selection and SVM Classification for
Object Recognition

SHEN Lin-Lin1 JI Zhen1

Abstract This paper proposes a Gabor wavelets and support vector machine (SVM)-based framework for object recognition.
When discriminative features are extracted at optimized locations using selected Gabor wavelets, classifications are done via SVM.
Compared to conventional Gabor feature based object recognition system, the system developed in this paper is both robust and
efficient. The proposed framework has been successfully applied to two object recognition applications, i.e., object/non-object
classification and face recognition. Experimental results clearly show advantages of the proposed method over other approaches.
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Feature extraction and classifier learning are essential to
the performance of an object recognition system. Discrimi-
native features and robust classifiers are always desirable to
pattern recognition applications. However, discriminative
features like Gabor features, either require computationally
expensive feature extraction process, or have large feature
dimension[1]. The large feature dimension could bring huge
computation and memory cost to the following classifier
training and classification, thus making robust classifiers,
e.g. support vector machine (SVM), are inapplicable. This
paper tries to propose a framework to design efficient and
robust object recognition system.

Due to its biological similarity to human vision system,
Gabor wavelets have been widely used in object recog-
nition applications like fingerprint recognition[2], charac-
ter recognition[3], etc.. One of the most important ob-
ject recognition applications, face recognition, has also
seen the advantages of Gabor-wavelets-based systems over
many other methods in the literature. For example, the
elastic bunch graph matching (EBGM) algorithm[4] has
shown very competitive performance and was ranked the
top performer in the face recognition technology (FERET)

evaluation[5]. In a recent face verification competition
(FVC2004), both of the top two methods used Gabor

wavelets for feature extraction. Chung[6] used the Gabor
features over a set of 12 fiducial points as input to a prin-
cipal component analysis (PCA) algorithm, yielding a fea-
ture vector of 480 components. They claimed to have im-
proved the recognition rate up to 19% with this method,
compared to that by a raw PCA. Liu[7] vectorized the Ga-
bor responses and then applied a downsampling by a fac-
tor of 64 to reduce the computation cost of the following
subspace training. Their Gabor-based enhanced Fisher lin-
ear discriminant model outperformed Gabor PCA and Ga-
bor Fisherfaces. A more detailed survey on Gabor wavelet
based face recognition methods can be found in [1].

Despite the success of Gabor-wavelet-based object recog-
nition systems, both the feature extraction process and
the huge dimension of Gabor features extracted demand
large computation and memory costs, which makes them
impractical for real applications[1]. For the same reason,
SVM has seldom adopted Gabor wavelets for feature ex-
traction. While subspace methods like PCA and linear
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discriminant analysis (LDA) could be applied for dimen-

sion reduction[7−8], they do not improve the efficiency of
feature extraction process. Some of the research workers
have tried to tackle this problem by: 1) downsampling the

images[9]; 2) considering the Gabor responses over a re-

duced number of points[6]; or 3) downsampling the convo-

lution results[7−8]. Strategies 2) and 3) have also been ap-

plied together[10]. However, downsampling methods suffer
from a loss of information because of the downsampling or
dimension reduction. Furthermore, the feature dimension
after downsampling might still be too large for fast training
of SVM. To make SVM applicable to Gabor features, Qin
and He[10] reduced the size by including only the convolu-
tion results over 87 manually marked landmarks. However,
locating the 87 landmarks itself was a difficult problem.
Furthermore, our work[11] has also shown that facial land-
marks like eyes, nose, and mouth might not be the optimal
locations to extract Gabor features for face recognition.

In this paper, we propose a general object recognition
framework based on SVM and the selected Gabor wavelets.
The most significant positions and wavelets for extracting
features are first learned using a boosting algorithm, where
the optimized Gabor responses are computed and used to
train a two-class-based SVM for classification. Since only
the most important wavelets are used, the two-class-SVM-
based system is both efficient and robust. The accuracy and
efficiency of such strategy are demonstrated by two applica-
tions, i.e., face/non-face classification and face recognition.

1 Gabor wavelets and feature extraction

1.1 Gabor wavelets

Gabor wavelet, which provides the optimized resolution
in both time and frequency domains for time-frequency
analysis[12], was first proposed by Gabor[13] for 1D signal
decomposition. The function was extended to 2D domain
by Granlund[14] for 2D image analysis. Recently, we have
also applied 3D Gabor wavelets to evaluate 3D image reg-
istration algorithms[15]. Gabor wavelets seem to be the op-
timal basis to extract local features for pattern recognition
for several reasons:

1) Biological motivation: the shapes of Gabor wavelets
are similar to the receptive fields of simple cells in the pri-
mary visual cortex[12].

2) Mathematical motivation: the Gabor wavelets are op-

timal for measuring local spatial frequencies[1].
3) Empirical motivation: Gabor wavelets have been

found to yield distortion tolerant feature spaces for a
number of pattern recognition tasks, including texture
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segmentation[16−17], character recognition[3], and finger-
print recognition[2].

In the spatial domain, the 2D Gabor wavelet is a Gaus-
sian kernel modulated by a sinusoidal plane wave. Setting
the sharpness of the Gaussian in the x axis as α and y axis
as β, the 2D Gabor wavelet can be defined as[18]

ϕ(f,θ,cx,cy)(x, y) =
αβ

π
exp(−(α2x2

r + β2y2
r)) exp(j2πfxr)

xr =(x− cx) cos θ + (y − cy) sin θ

yr = − (x− cx) sin θ + (y − cy) cos θ (1)

where (cx, cy) is the central location of the wavelet in the
image, f is the frequency of the modulating sinusoidal plane
wave, α = f/γ and β = f/η decides the width of the Gaus-
sian envelop, and θ is the orientation of the major axis
of the elliptical Gaussian. The size of the Gaussian en-
velope monotonically varies with the value of the central
frequency. The higher the central frequency of the Ga-
bor sinusoidal carrier, the smaller the area the Gaussian
envelope will cover in the spatial domain. This is under-
standable since the high frequency signal changes faster.

A Gabor wavelet is thus determined by the following
parameters: the translation (cx, cy), the central frequency
f , the orientation θ, and the ratio between frequency and
the sharpness of the Gaussian axis γ and η. In practi-
cal applications, the values of γ and η are normally fixed
and a set of wavelets ψψψ = (ϕn1 , ϕn2 , · · · , ϕnN ) with differ-
ent frequency fu, orientation θv, and translations (cx, cy)
are used. Most of the research studies reported in face
recognition followed the strategies used in [4, 19], such

that γ = η =
√

2, fu = Fmax/2u/2, u = 0, · · · , U − 1,
and θv = (vπ)/8, v = 0, · · · , V − 1. According to the
Nyquist sampling theory, a signal containing frequencies
higher than half of the sampling frequency cannot be recon-
structed completely. Therefore, the upper limit frequency
for a 2D image is 0.5 cycles/pixel, while the lower limit is
0. However, for face images, the actual useful band is much
narrower, and Fmax = 0.25 cycles/pixel has been demon-

strated to be a reasonable choice[19]. The initial parameter
selection aims to achieve a reasonable balance between per-
formance and the increased computation. We have tested
different combinations of U and V for face recognition in
[8], the experiments led to the selection of Gabor wavelets
of five scales and eight orientations for feature extraction.
In general applications, (cx, cy) could be the coordinates of
each pixel in the image. The number of wavelets available,
after initial parameter selection, will thus be as large as
U ×V ×C, where C is the number of pixels in a 2D image.
Fig. 1 shows a set of 40 wavelets to be applied to extract
features at a brain slice.

Fig. 1 A set of 40 Gabor wavelets to be applied to feature
extraction

1.2 Feature extraction

Given a set of Gabor wavelets ψψψ = (ϕn1 , ϕn2 , · · · , ϕnN )
going through initial parameter selection, a common fea-

ture extraction approach is to construct a feature vec-
tor G(I) by concatenating the inner product of an im-
age I(x, y) with each wavelet ϕni(x, y), i.e. G(I) =
(wn1 , wn2 , · · · , wnN ), where wni =‖ 〈I, ϕni〉 ‖. The fea-
ture set thus consists of the results of the local convolu-
tion of the image I(x, y) with all of the initially designed
Gabor wavelets ϕn, where nnn = (cx, cy, θ, f) determines
the associated parameters. As an example, taking an im-
age of size 128 × 128, the Gabor feature vector will be of
128 × 128 × 5 × 8 = 655 360 dimensions, which is incredi-
bly large. Due to the large number of convolution opera-
tions, the computation and memory cost of feature extrac-
tion is also necessarily high. Instead of using all the Ga-
bor wavelets, it is more sensible to select only the relevant
Gabor wavelets to perform convolution with the image at
appropriate positions. Two questions arise from this con-
sideration: 1) which parameters (θ, f) should be used, and
2) at which image locations (cx, cy).

2 The proposed object recognition
framework

As described in the last section, the feature extracted
using the whole set of Gabor wavelets could bring large
memory and computation cost to the following classifiers.
To make the object recognition system more efficient, the
most significant wavelets shall be identified and used for
feature extraction.

2.1 Selecting significant Gabor wavelets for fea-
ture extraction

Based on the idea of the wavelet network, Krüeger
used a set of Gabor wavelets ψψψ = (ϕn1 , ϕn2 , · · · , ϕnN ),
namely Gabor wavelet network (GWN) to represent an

image[20−22], where nnn = (cx, cy, θ, α, β) is a variable vector
over the image, c denotes translation, (α, β) dilation, and
θ orientation. Thus, each Gabor wavelet is associated with
a location in the image, an orientation, and a scale param-
eter (α, β) (which is decided by the frequency parameter
f of the Gabor wavelet, see (1) for details). The GWN
for an image I is then defined by optimizing the objective
function

E = min
ni

∥∥∥∥∥I −
∑

i

wniϕni

∥∥∥∥∥

2

(2)

The primary aim of Krueger′s optimization procedure is
to minimize the reconstruction error. Given the optimal
GWN of an image, the image can be reconstructed approx-
imately by a linear combination of the weighted wavelets:
I =

∑
i wiϕi = WWWTψψψ, where WWW = (wn1 , wn2 , · · · , wnN ).

The weights of a GWN are directly related to Gabor
wavelet responses at image locations. Large weights in-
dicate the similarity of the corresponding wavelets and the
local property of the image.

Fig. 2 shows the images reconstructed with 16, 52, 116,
and 216 Gabor wavelets (left to right). The quality of the
reconstruction of course depends on the number of Ga-
bor wavelets used and can be varied to reach some de-
sired degree of precision. As the set of Gabor wavelets
ψψψ = (ϕn1 , ϕn2 , · · · , ϕnN ) vary from image to image, GWNs
are image dependent, which means that the reconstruction
coefficients are not uniform across images. Gabor expan-
sion and GWN provide useful approaches to represent ob-
jects. However, the Gabor wavelet “basis functions” and
GWNs are either non-orthogonal or image dependent. As
a result, these methods either do not provide unique rep-
resentations for objects or do not offer uniform representa-
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tions across images. For object recognition purposes, rather
than seeking the set of Gabor wavelets, which can approx-
imate an image, we should seek Gabor wavelets that are
tuned to discriminating one object from another.

Fig. 2 Original image and reconstructed images[20]

Introduced by Freund and Schapire[23], the essence of
boosting algorithm is to select a number of very simple
weak classifiers, which are then linearly combined into a
single strong classifier. The algorithm operates as follows:
for a two-class problem, m labeled training samples are
given as (xxxi, yi), i = 1, 2, · · · , m, where yi ∈ {−1, 1} is
the class label associated with sample xxxi ∈ RN . A large
number of weak classifiers h : RN → {−1, 1} can be gen-
erated to form a weak classifier pool for training. In each
of the iterations, the space of all possible weak classifiers is
searched exhaustively to find the one that contributes the
least to the overall classification error. The error is then
used to update the weights associated with each sample
such that the wrongly classified samples have their weights
increased. When a weak classifier is designed to use only
a single Gabor wavelet for feature extraction, boosting is
equivalent to wavelet selection.

For two-class object recognition problems, the boosting
algorithm can be directly applied to the training samples
for wavelet selection. However, when the task of object
recognition, e.g. face recognition, is a multi-class problem,
it needs to be converted to a two-class problem before the
boosting algorithm could be applied. Two spaces, intra-
object difference and extra-object difference spaces are de-
fined, with intra-object space measuring dissimilarities be-
tween samples of the same object and extra-object space
dissimilarities between different objects, respectively. Re-
call that each component of a Gabor feature is associated
with a Gabor wavelet, i.e., it is obtained by performing in-
ner product of an image with a Gabor wavelet ‖〈I, ϕj〉‖.
The difference between two images and on this compo-
nent can be represented as ‖〈Ip, ϕj〉‖ − ‖〈Iq, ϕj〉‖. Since
each weak classifier makes decision based on a single Gabor
wavelet, in each of the boosting iterations, the space of all
possible weak classifiers (wavelets) is searched exhaustively
to find the best weak classifier (wavelet) that will produce
the lowest classification error. The error is then used to
update the weights such that the wrongly classified sam-
ples get more focus. Such selected Gabor wavelets should
be significant for object recognition, as intra- and extra-
object space discrimination is one of the major difficulties
in object recognition. More details about the selection pro-
cess can be found in our previous work[11].

Upon completion of T boosting iterations, T weak classi-
fiers are selected to form the final strong classifier H(xxx) =

sgn(
∑T

t=1 αiht(xxx)). The resulting strong classifier, called
boosted classifier (BC) in this paper, is a weighted lin-
ear combination of all the selected weak classifiers, with
each weak classifier using certain Gabor wavelet for feature
extraction. At the same time, T most significant Gabor
wavelets for feature extraction can also be identified.

2.2 SVM for classification

Once the significant wavelets have been identified, they
can be used to extract features for training classifiers for
object recognition. Since the wavelets are selected using

intra-person and extra-person space discrimination criteria,
a natural choice would be the boosting algorithm learned
strong classifier, namely BC. In this paper, we also tried
SVM and achieved further improvement on classification
accuracy with similar efficiency.

Ever since its invention, SVM has also been greatly
developed and widely applied to classification and pat-
tern recognition. One of the main reasons for the wide
application of SVM is its capacity to handle nonlinearly
separable data. SVM is basically a hyperplane classifier
S(xxx) = 〈www,bbb〉+bbb aimed at solving the two class problem[24].
For non-linearly separable data, a nonlinear mapping func-
tion φ : RN → F , xxx → φ(xxx) is used to map them into a
higher dimension feature space where the hyperplane classi-
fier can be applied. Using the kernel trick[25], the non-linear
SVM is found to be

S(xxx) = sgn

(∑

k

αkykk(xxxk,xxx) + bbb

)
(3)

where xxxk ∈ RN are the support vectors (SVs) learned by
SVM, k(xxxk,xxx) is a kernel function, e.g., a polynomial ker-
nel, an radial basis function (RBF) kernel, etc.. The deci-
sion function of SVM is only based on the dot product of
the input feature vector with the SVs, i.e., it has no require-
ments on the dimension of the feature vector. Theoretically,
features with any dimension can be fed into SVM for train-
ing. However, in practical implementation, features with
large dimension, e.g. Gabor features, could bring substan-
tial computation and memory cost to the SVM training and
classification process. In our experiments, the SVM train-
ing process did not even complete after 74 hours when a set
of Gabor features of 23 040 dimension was used due to the
large computation and memory costs. The dimension of
features could be substantially reduced when only selected
Gabor wavelets are applied. For example, our experimen-
tal results show that hundreds of features are enough to
achieve very good accuracy. SVM using the selected Gabor
wavelets for feature extraction, namely, optimized Gabor
support vector machine (OG-SVM), is thus very efficient.
Fig. 3 shows the details of the wavelet selection process and
training of the proposed OG-SVM.

Fig. 3 Learning process of the proposed OG-SVM classifier

2.3 Object recognition

As shown in Fig. 3, once the boosting iterations and
the SVM learning process are completed, T selected Ga-
bor wavelets ψ = (ϕ1, ϕ2, · · · , ϕT ) and two classifiers, i.e.
BC and OG-SVM, are created. Though trained to discrim-
inate intra-object and extra-object spaces, BC and OG-
SVM could also be used for multi-class object recognition
as follows: given a gallery {qj} of m known objects and a
probe p to be identified, both classifiers will first compute
the Gabor feature differences {xxxj = [d1, · · · , dt, · · · , dT ]},
dt =| ‖〈pj , ϕt〉‖ − ‖〈q, ϕt〉‖ |, between the probe and each
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of the gallery images, and then calculate an intra-object
confidence score using respective decision functions:

δj =





T∑
t=1

αtht(xxxj), BC

∑

k

αkykk(xxxk,xxxj) + bbb, SVM

(4)

The probe is then identified as an object that gives the
maximum confidence score δj .

3 Experimental results

3.1 Object and non-object recognition

3.1.1 Database

We first apply the proposed framework to solve two class
object recognition tasks, i.e., face/non-face and car/non-
car classification problems. Two image sets, face image set
and car image set, are used to test performance of the pro-
posed classifier. The face image set was provided in [26]
and contained 4 916 images with faces and 7 872 images
without faces. Fig. 4 shows some example face and non-
face images. All of the face images were of size 24 × 24,
which were randomly split into a training set and test set
containing 2 458 positive samples (faces) and 3 936 nega-
tive samples (non-faces) each. The second image set used
in our experiments contained 550 images with at least a
car in them and 500 images that did not contain a car[27].
The car image set was also randomly split into a training
set and a test set. The training set contained 440 car im-
ages and 400 non-car images, whilst the remaining 110 car
images and 100 non-car images were included in the test
set. Fig. 5 shows the sample images from the car image set,
which are of size 10 040. The tasks here would be training
classifiers to classify images to one of the two classes, e.g.
face and non-face. Classifiers were first learned using the
training set, then tested using the test set.

Fig. 4 Images from the face image set

Fig. 5 Images from the car image set

3.1.2 Recognition results

The false accept rates (FAR) and false reject rates (FRR)
for the trained BC classifier are shown in Figs. 6 and 7,
which show the results on the test face image set and
the test car image set. The best face/non-face classi-
fier achieved 99.39% classification rate and 1.75% FRR
with 150 selected Gabor wavelets/features, while the best
car/non-car classifier achieved 97.0 % classification rate and
2.0% FRR with only 100 wavelets/features.

Based on the results of BC, we applied 150 selected
wavelets to extract features for face/non-face recognition.
The performance of OG-SVM on the face image set has
been shown in Table 1, together with SVM trained using
the whole set of Gabor features with dimension 23 040 (G-
SVM), using the raw pixels with dimension 24 × 24 = 576
(R-SVM) and the BC. For R-SVM, the pixel values of each

sample were concatenated to a feature vector to train SVM.
A Pentium 4 1.8 GHz PC and the SVM-light package[28]

Fig. 6 FAR and FRR on the face image set

Fig. 7 FAR and FRR on the car image set

Table 1 Classification results of the face image set

SVM

BC OG-SVM G-SVM R-SVM

Linear RBF Linear RBF Linear RBF

Feature dimension 150 150 150 23 040 23 040 576 576

Number of SVs N/A 233 271 503 N/A 1 434 1 386

SVM training time N/A 38 s 75 s 10 h > 74 h 180 s 270 s

FRR (%) 1.75 1.43 1.26 1.10 N/A 10.49 4.96

FAR (%) 0.61 0.36 0.30 0.18 N/A 3.78 0.97

were used in our experiments. Compared with classifiers us-
ing Gabor features, R-SVM achieved the highest FAR and
FRR, which suggests that Gabor filters are good choices to
extract features for classification. However, due to the huge
dimension of Gabor feature, we did not succeed in training
the G-SVM using RBF kernel — the program crashed after
running 74 hours, which might be caused by high memory
usage and computation cost. It also took approximately 10
hours to train G-SVM with linear kernel. The training time
might increase exponentially with the number of training
samples. The results also suggest that the dimension of
features shall be taken into consideration when designing
practical SVM classifiers. In addition, the computational
cost of convolving an image with 40 Gabor wavelets is very
high, which makes G-SVM unsuitable for real time appli-
cation. Since SVM is specially suited for classification,
OG-SVM achieves lower FAR and FRR than BC. Both
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methods used the same 150 Gabor wavelets selected by
boosting algorithm. The training of OG-SVM with RBF
kernel took less than 2min. Only 150 inner products with
selected wavelets are necessary to extract Gabor features,
which makes OG-SVM highly memory and computational
efficient.

3.2 Face recognition

We now applied the proposed framework to a typical
multi-class object recognition task, face recognition. As
described in Section 2.2, the system starts with selecting
significant Gabor wavelets for discriminating intra-object
and extra-object spaces. Once the two-class based OG-
SVM is learned, it can be applied to object recognition
using the decision rule described in Section 2.3.

3.2.1 Database

The FERET database was used here to evaluate the per-
formance of the proposed framework. The database con-
sisted of 14 051 eight-bit grayscale images of human heads
with views ranging from frontal to left and right profiles.
600 frontal face images corresponding to 200 subjects were
extracted from the database for the experiments and each
subject had three images of 256× 384 with 256 gray levels.
The images were captured at different times under different
illumination conditions and contained various facial expres-
sions. Two images of each subject were randomly chosen
for training, and the remaining one was used for testing.
The following procedures were applied to normalize the face
images prior to the experiments:

1) Each image is rotated and scaled to align the centers
of the eyes;

2) Each face image is cropped to the size of 64 × 64 to
extract facial region;

3) Each cropped face image is normalized to zero mean
and unit variance.

3.2.2 Intra-person and extra-person space dis-
crimination

Using the method described in Section 2.1, a training set
consisting of 200 intra-person difference samples and 1 600
extra-person difference samples was generated from the face
database. Since both BC and OG-SVM were trained to dis-
criminate intra-person and extra-person differences, we first
evaluated their classification performances on the training
set. Fig. 8 shows the classification error of BC and OG-
SVM with different kernel functions, which were computed
as the ratio between the number of wrongly classified dif-
ference samples and the number of training samples. One
can observe from the figure that the performances of both
classifiers improve when the number of features increases.
However, the performance of OG-SVM is much more sta-
ble than BC. While OG-SVM with RBF kernel achieves
the lowest classification error rate (0.44 %) when 140 fea-
tures are used, OG-SVM with linear kernel shows similar
performance.

3.2.3 Recognition performance

The classifiers were then applied to the test set (200 im-
ages, 1 image per person) for face recognition and their
performances are shown in Fig. 9. Similarly, OG-SVM
achieved a higher recognition rate than BC when differ-
ent number of features were used. The highest identifica-
tion accuracy of 92 % was achieved by OG-SVM with linear
kernel when 120 Gabor features were used. The results also
suggest that the difference of OG-SVM using RBF kernel
and linear kernel is quite small, when the features selected
by boosting algorithm are considered.

To show the efficiency and accuracy of the proposed

method, we also compared its performance with other
Gabor-wavelet-based approaches in Table 2. While PCA
and LDA are also well known as Eigenface and Fisherface
methods, details of downsample Gabor +PCA and down-
sample Gabor +LDA can be found in [8]. In the imple-
mentation, downsampling with rate 16 was used to reduce
the dimension of extracted Gabor features before they were
input to PCA, or LDA for further processing. The table
shows that the proposed OG-SVM achieved a similar accu-
racy with downsample Gabor+LDA, but with much fewer
feature dimensions and much less feature extraction costs.

Fig. 8 Classification performances of OG-SVM and BC

Fig. 9 Recognition performances of OG-SVM and BC

Table 2 Accuracy and efficiency of OG-SVM

Recognition Number of convolutions for Dimension of
Methods

rate (%) Gabor feature extraction features

PCA 60 N/A 64×64=4 096

LDA 76 N/A 64×64=4 096

Downsample

Gabor+PCA
80 64× 64× 40 = 163 840 10 240

Downsample

Gabor+LDA
92 64× 64× 40 = 163 840 10 240

BC 90 120 120

OG-SVM 92 120 120

4 Discussions

We have proposed in this paper an SVM and Gabor-
wavelets-based framework for object recognition. While
significant Gabor wavelets were applied at selected object
landmarks for feature extraction, SVM was used for clas-
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sification. A boosting-based learning process was used to
reduce the feature dimensions and make the Gabor feature
extraction process substantially more efficient. An efficient
and robust classifier, OG-SVM was then trained. While
the criteria integrated in the boosting algorithm was used
in the paper to select important Gabor wavelets, the feed-
back from SVM classification could also be further applied.
However, at each iteration the associated SVM needs to
be retrained and tested. When the number of candidate
wavelets/features is huge, the selection process could be-
come intractable. Intra-object and extra-object concepts
have also been adopted in this paper to make boosting
algorithm applicable to the multi-class problem. We are
currently working on making boosting algorithm directly
applicable to multi-class problems.

The proposed object recognition framework has been
successfully applied to two object recognition tasks, i.e.,
object/non-object classification and face recognition. The
results clearly show the advantages of the proposed system
over other approaches. For example, the performance of
OG-SVM is shown to be much more efficient than that of
SVM using the whole set of Gabor features, and is much
more accurate than that of SVM using the raw pixel values.
When applied to face recognition, the two-class-based OG-
SVM has been shown to beat several multi-class-based al-
gorithms like PCA, LDA, and downsample Gabor + PCA.
By combining optimized Gabor features with SVM, our
method not only substantially reduces computation and
memory cost of the feature extraction process, but also
achieves very accurate recognition performance.

References

1 Shen L L, Bai L. A review on Gabor wavelets for face
recognition. Pattern Analysis and Applications, 2006, 9(2-
3): 273−292

2 Wang W, Li J W, Huang F F, Feng H L. Design and imple-
mentation of Log-Gabor filter in fingerprint image enhance-
ment. Pattern Recognition Letters, 2008, 29(3): 301−308

3 Ding K, Liu Z B, Jin L W, Zhu X H. A comparative study
of Gabor feature and gradient feature for handwritten Chi-
nese character recognition. In: Proceedings of International
Conference on Wavelet Analysis and Pattern Recognition.
Washington D. C., USA: IEEE, 2007. 1182−1186
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