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Image Fusion Algorithm Based on Spatial

Frequency-Motivated Pulse Coupled Neural Networks in

Nonsubsampled Contourlet Transform Domain
QU Xiao-Bo1 YAN Jing-Wen1, 2 XIAO Hong-Zhi2 ZHU Zi-Qian3

Abstract Nonsubsampled contourlet transform (NSCT) provides flexible multiresolution, anisotropy, and directional expansion
for images. Compared with the original contourlet transform, it is shift-invariant and can overcome the pseudo-Gibbs phenomena
around singularities. Pulse coupled neural networks (PCNN) is a visual cortex-inspired neural network and characterized by the
global coupling and pulse synchronization of neurons. It has been proven suitable for image processing and successfully employed in
image fusion. In this paper, NSCT is associated with PCNN and used in image fusion to make full use of the characteristics of them.
Spatial frequency in NSCT domain is input to motivate PCNN and coefficients in NSCT domain with large firing times are selected
as coefficients of the fused image. Experimental results demonstrate that the proposed algorithm outperforms typical wavelet-based,
contourlet-based, PCNN-based, and contourlet-PCNN-based fusion algorithms in terms of objective criteria and visual appearance.
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Image fusion is the combination of two or more different
images to form a new image by using a certain algorithm[1].
The combination of sensory data from multiple sensors
can provide reliable and accurate information. It forms
a rapidly developing research area in remote sensing, med-
ical image processing, and computer vision[1−2]. Most of
these approaches are based on combining the multiscale
decompositions (MSD) of the source images. MSD-based
fusion schemes provide much better performance than the
simple methods studied previously[2]. These methods de-
compose the source images into high-frequency and low-
frequency subbands. Detailed and coarse features remain in
the two types of subbands, respectively. Two core questions
of MSD-based fusion algorithms are which MSD method
should be used and how to combine coefficients in sub-
bands.

For the first question, the discrete wavelet transform
(DWT) becomes the most popular MSD method in im-
age fusion because of joint information represented at the
spatial-spectral domain. However, wavelet has its own
limits. It is expensive for wavelet to represent sharp im-
age transitions such as edges[3]. Furthermore, wavelet
will not “see” the smoothness along the contours and
separable wavelets can only capture limited directional
information[4]. Thus, new MSD transforms are introduced
in image fusion (i.e., bandelet[5], curvelet[6], contourlet[7−9],
etc.) to overcome the limits of wavelet. Contourlet was

recently pioneered by Do[4]. Compared with wavelet, it
provides different and flexible number of directions at each
scale and can capture the intrinsic geometrical structure.
However, the original contourlet[4] lacks shift-invariance
and causes pseudo-Gibbs phenomena around singularities.
Nonsubsampled contourlet transform (NSCT)[10], as a fully
shift-invariant form of contourlet, leads to better frequency
selectivity and regularity. Thus, NSCT is used as the MSD
method in this paper.

For the second question, the typical fusion algorithms
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are based on the activity-level measurement. Coefficients
in MSD domain with high activity-level are selected to
compose the fused image[2]. In this paper, we present a
bio-inspired activity-level measure based on pulse coupled
neural networks (PCNN). PCNN is a novel biological neu-
ral network developed by Eckhorn in 1990 and based on
the experimental observations of synchronous pulse bursts
in cat and monkey visual cortex[11−12]. It is character-
ized by the global coupling and pulse synchronization of
neurons. These characteristics benefit image fusion which
makes use of local image information. PCNN has been suc-
cessfully used in image fusion[9, 13−17]. Pixels in subbands
images in MSD domain (named coefficients and simplified
into coef in figures and tables in this paper) or pixels in
spatial domain with greater firing times are considered in
high activity-level. However, in these PCNN-based algo-
rithms, the value of single pixel in spatial or MSD domain
is used to motivate one neuron. In fact, humans are often
sensitive to edges, directional features, etc. So, a pure use
of single pixels is not enough. In this paper, spatial fre-
quency, which stands for gradient energy in NSCT domain,
is used to motivate PCNN neurons for the first time.

For simplicity, we term the proposed algorithm as spa-
tial frequency-motivated PCNN in NSCT domain, NSCT-
SF-PCNN for short. In this algorithm, the flexible mul-
tiresolution, anisotropy, and directional expansion for im-
ages of NSCT are associated with global coupling and pulse
synchronization characteristic of PCNN. We tend to take
PCNN for nonlinear filter to select coefficients in image fu-
sion. Experimental results demonstrate that the proposed
algorithm outperforms typical wavelet-based, contourlet-
based, NSCT-based, PCNN-based, and contourlet-PCNN-
based fusion algorithms in terms of objective criteria and
visual appearance.

1 Contourlet and PCNN in image fu-
sion

1.1 Contourlet in image fusion

Contourlet is proposed by Do to obtain a sparse
expansion for smooth contours[4], which overcomes the
limitation of wavelet in representing the contours by using
square-shaped brush strokes and many fine “dots”. In the
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contourlet, the Laplacian pyramid (LP) is first used to cap-
ture the point discontinuities and then followed by a direc-
tional filter bank (DFB) to link point discontinuities into
linear structures. The number of direction decomposition
at each level can be different, which is much more flexible
than the three directions in wavelet. Unfortunately, in the
original contourlet[4], downsamplers and upsamplers are
presented in both LP and DFB as shown in Fig. 1 (a). Thus,
it is shift-invariant and causes pseudo-Gibbs phenomena
around singularities. NSCT is proposed by Da[10], which
aims to overcome this disadvantage. Fig. 1 (b) shows the
decomposition framework of NSCT. Nonsubsampled pyra-
mid structure (NPS) and nonsubsampled DFB are used in
NSCT. The NPS is achieved by using two-channel nonsub-
sampled 2-D filter banks. The DFB is achieved by switch-
ing off the downsamplers/upsamplers in each two-channel
filter bank in the DFB tree structure and upsampling the
filters accordingly. As a result, NSCT yields better fre-
quency selectivity, regularity, and shift-invariance.

In the contourlet-based image fusion algorithms[7−9],
contourlet or NSCT is used as the MSD method. As ab-
solute value measure in high-frequency and average rule in
low-frequency subbands are the typical activity level mea-
sure in other MSD-based fusion algorithms, activity-level
are measured on the coefficients of subbands in contourlet
domain. Coefficients with high activity-level are selected as

the coefficients of fused subbands and an inverse contourlet
is performed to reconstruct the fused image. The frame-
work of contourlet-based algorithms is shown in Fig. 2.

1.2 PCNN in image fusion

PCNN is a feedback network and each PCNN neuron
consists of three parts: the receptive field, the modula-
tion field, and the pulse generator[12]. In image processing,
PCNN is a single layer pulse coupled neural cells with a
two-dimensional connection[13] as shown in Fig. 3.

In the existing PCNN-based fusion algorithms [9, 14−17],
pixels in spatial or MSD domain are input to PCNN, and
there exists a one-to-one correspondence between the pixels
and the neurons. Each neuron is connected with neighbor-
ing neurons in the linking range. The output of each neuron
results in two states, namely firing and non-firing. Then,
the sum of neuron firing times will generate a firing map
whose size is equal to the images in spatial or MSD domain
and the value of each pixel in firing map is equal to neuron
firing times. We summarize these algorithms as Fig. 4. The
value of pixels in spatial or MSD domain is considered as
the original image information in the existing algorithms.
However, a pure use of pixels is not effective enough be-
cause humans are often sensitive to edges and directional
features. We believe it will be more reasonable to employ
features, rather than value of pixels, to motivate PCNN.

(a) Contourlet (b) NSCT

Fig. 1 Decomposition framework of contourlet and NSCT

Fig. 2 Schematic diagram of contourlet-based fusion algorithm

Fig. 3 Connection model of PCNN neuron Fig. 4 Schematic diagram of existed PCNN-based fusion algorithms
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2 Image fusion algorithm based on
NSCT-SF-PCNN

2.1 NSCT-SF-PCNN

For the first time, Fang successfully used PCNN in con-
tourlet domain for visible and infrared image fusion[9].
However, the contourlet used in [9] is the original form
and lacks shift-invariance. In addition, single coefficient is
used to motivate PCNN directly. In fact, humans are often
sensitive to features, e.g. edges. So, a pure use of value of
single coefficient is not enough.

In this paper, NSCT is used as the MSD method to pro-
vide a better representation of the contours than wavelet
and it overcomes pseudo-Gibbs phenomena around singu-
larities of contourlet. What is more, instead of using PCNN
in contourlet domain directly, spatial frequency (SF)[18] in
contourlet domain is considered as the gradient features
of images and we use SF to motivate PCNN instead. For
simplicity, we term the proposed algorithm as NSCT-SF-
PCNN.

Let Il,k
i,j denote the coefficients located at (i, j) in the

k-th subbands at the l-th decomposition level. The SF in
NSCT domain is defined in (1). SF is measured by using
slipping window of coefficients in subbands. It measures
the whole activity in the window-based coefficients via the
gradient energy in rows and columns. SF in each subbands
are inputted to PCNN to motivate the neurons and gen-
erate pulse of neurons with (2). Then, firing times T l,k

i,j is

calculated as (3).

Sl,k
i,j =

∑
iεM,jεN

(Il,k
i,j − Il,k

i−1,j)
2 + (Il,k

i,j − Il,k
i,j−1)

2 (1)





F l,k
ij (n) = Sl,k

ij

Ll,k
ij (n) = e−αLLl,k

ij (n− 1) + VL

∑
pq W l,k

ij,pqY
l,k

ij,pq(n− 1)

U l,k
ij (n) = F l,k

ij (n) ∗ (1 + βLl,k
ij (n))

θl,k
ij (n) = e−αθ θl,k

ij (n− 1) + VθY
l,k

ij (n− 1)

Y l,k
ij (n) =

{
1, if U l,k

ij (n) > θl,k
ij (n)

0, otherwise
(2)

T l,k
i,j = T l,k

i,j (n− 1) + Y l,k
i,j (n) (3)

In the mathematical model of PCNN in (2), the feeding

input F l,k
ij is equal to the normalized SF Sl,k

i,j . The link-

ing input Ll,k
ij is equal to the sum of neurons firing times

in linking range. Wij,pq is the synaptic gain strength and
subscripts p and q are the size of linking range in PCNN.
αL is the decay constants. VL and Vθ are the amplitude
gain. β is the linking strength. U l,k

ij is total internal ac-

tivity. θl,k
ij is the threshold. n denotes the iteration times.

If U l,k
ij is larger than θl,k

ij , then, the neuron will generate

a pulse Y l,k
ij = 1, also called one firing time. In fact, the

sum of Y l,k
ij in n iteration is often defined as (3), called

firing times, to represent image information. Rather than
Y l,k

ij (n), one often analyzes T l,k
ij (n), because neighboring

coefficients with similar features representing similar firing
times in a given iteration times.

2.2 Image fusion algorithm based on NSCT-SF-
PCNN

The core reason why PCNN is used in image fusion lies
in its global coupling and pulse synchronization of neurons.
These biological characteristics make full use of the local in-
formation in images, but not single coefficient information
in most popular MSD-based fusion algorithms. Although
a regional firing characteristic of PCNN[17] is investigated
in multi-focus image fusion, we still use the firing times as
a determination to select NSCT coefficients.

The schematic diagram of the proposed NSCT-SF-
PCNN algorithm is shown in Fig. 5 and implemented as

1) Decompose the source images into subbands via
NSCT.

2) Measure the SF as (1) in slipping window of coeffi-
cients in subbands.

3) SF in each subbands are input to PCNN to motivate
the neurons and generate pulse of neurons with (2). Then,

firing times T l,k
ij (n) is calculated as (3).

4) Get the decision map Dl,k
ij based on (4) and select the

coefficients with (5), which means that coefficients with
large firing times are selected as coefficients of the fused
image. This is the fusion rule proposed in this paper.

Dl,k
F,ij =

{
1, if T l,k

1,ij(n) ≥ T l,k
2,ij(n)

0, if T l,k
1,ij(n) < T l,k

2,ij(n)
(4)

xl,k
F,ij =

{
xl,k

1,ij , if Dl,k
ij (n) = 1

xl,k
2,ij , if Dl,k

ij (n) = 0
(5)

where xl,k
F,ij , xl,k

1,ij , and xl,k
2,ij denote the coefficients of the

fused image and two source images, respectively.
5) Use the selected-out coefficients in (5) to reconstruct

the fused image via inverse NSCT.

3 Experimental results

In this section, we use NSCT-SF-PCNN to fuse the
multi-focus images, infrared and visible images, and re-
mote sensing images. Parameters of PCNN is set as p× q,
αL = 0.06931, αθ = 0.2, β = 0.2, VL = 1.0, Vθ = 20,

W =




0.707 1 0.707
1 0 1

0.707 1 0.707


, and the maximal iterative num-

ber is n = 200.

Fig. 5 Schematic diagram of NSCT-SF-PCNN fusion algorithm
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In order to show the advantages of the new algo-
rithm, we establish three steps to demonstrate that the
proposed NSCT-SF-PCNN outperforms other fusion algo-
rithms. First, “db2” wavelet, atrous wavelet, contourlet,
and NSCT are compared. Second, typical activity-level
measurements in NSCT domain are compared. Third, typi-
cal PCNN-based fusion methods in wavelet, contourlet, and
NSCT domain are compared. In the comparisons, besides
visual observation, mutual information[19], and QAB/F [20]

are used as information-based objective criteria. The rea-
son is that image fusion aims at combining information and
these criteria do not require the information of ideal fused
image. Mutual information essentially computes how much
information from source images is transferred to the fused
image, whereas QAB/F computes and measures the amount
of edge information transferred from the source images to
the fused images using a Sobel edge detector.

3.1 Comparisons on MSD methods

In this section, discrete wavelet transform (DWT) with
basis “db2” and contourlet, which are shift-variant trans-
forms, atrous wavelet transform, and NSCT,which are
shift-invariant transforms, are compared. In these MSD
methods, the average and maximum rules are used in the
low-frequency and high-frequency domain, respectively.

Figs. 6 and 7 show the multifocus image fusion results
and visible and infrared image fusion results of these meth-
ods. Focusing on the labeled region in Fig. 6, one can obvi-
ously find that the fused images of two shift-invariant meth-
ods, atrous wavelet and NSCT, are clearer and more natu-
ral than the DWT and contourlet fused results. It is proven
that shift-invariant methods can overcome the pseudo-
Gibbs phenomena successfully and improve the quality of
the fused image around edges. In Fig. 7, the human pre-
sented with white color is being better extracted using con-
tourlet and NSCT than that of DWT and atrous wavelet.
Focusing on labeled region in Fig. 7, the house roof of the
NSCT is clearer than that of other methods.

Furthermore, objective criteria on mutual information
and QAB/F in Table 1 indicate that NSCT method trans-
ferred more information to fused image than that of atrous
wavelet, outperforming DWT and contourlet. So, it can be
concluded that NSCT is the best MSD method. That is
why NSCT is used as the MSD method in this paper.

(a) (b) (c)

(d) (e) (f)

Fig. 6 Multifocus image fusion results of MSD-based
algorithms ((a) clockA.tif: focus on right; (b) clockB.tif: focus

on left; (c)∼(f) Fused images using DWT, atrous wavelet,
Contourlet, NSCT)

(a) (b) (c)

(d) (e) (f)

Fig. 7 Infrared and visible image fusion results of MSD-based
algorithms ((a)Visible image: treesA.tif; (b) Infrared image:
treesB.tif; (c)∼(f) Fused image using DWT, atrous wavelet,

contourlet, NSCT)

Table 1 Comparison of objective criteria of
different MSD methods

Images Criteria DWT Atrous wavelet Contourlet NSCT

MI 6.3320 6.6208 6.0073 6.6761Clock

QAB/F 0.6099 0.6657 0.6122 0.6683

MI 1.4 719 1.5294 1.4822 1.5732Tree

QAB/F 0.4342 0.4674 0.4070 0.4828

3.2 Comparisons on activity-level measurement

In this section, all the comparisons are based on NSCT
decomposition method. We compare the activity-level mea-
surement of NSCT-SF-PCNN with other typical activity-
level measurements in NSCT domain. In coefficients-max
algorithms, absolute value of coefficients is used to mea-
sure the activity level directly. In SF-max algorithm, coef-
ficients with greater SF in slipping window are considered
in higher activity-level. Whereas in coefficient-PCNN and
SF-PCNN algorithms, coefficients corresponding to greater
firing times are considered in higher activity-level. All the
coefficients with high activity-level are selected to compose
the fused image[2].

Figs. 8 (c)∼ (f) (see next page) show the high-frequency
subimages and their SF in NSCT domain. Figs. 8 (g)∼ (k)
show the decision maps, in which the white color indicates
that coefficients are selected from clockA.tif, otherwise se-
lected from clockB.tif. Because the zoomed out part of
clockA.tif shown in Fig. 8 (a) is clearer than in Fig. 8 (b),
the optimal decision map would be in white color shown
in Fig. 8 (k), which means all coefficients should be selected
from clockA.tif. In Figs. 8 (e) and (f), it can be seen that SF
extracts the edges of subimages well. Figs. 8 (g) and (i) in-
dicate that SF considered as activity-level measurement is
more reasonable than that from pure use of absolute value.
Fig. 8 (h) shows that when the values of coefficients are in-
put to motivate PCNN neurons, the global coupling and
pulse synchronization of neurons benefits selecting coeffi-
cients, which considers the neighboring coefficients a lot.
Thus, when SF is inputted to motivate PCNN neurons,
one can imagine that NSCT-SF-PCNN could successfully
accomplish the selection. The decision maps in Fig. 8 (j)
show that the NSCT-SF-PCNN is the best one in the tested
four activity-level measurements.

Listed in Table 2 is a comparison of the objective cri-
teria of different activity-level measurements. The word
coefficient is named coef for short, and coef-max means
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the coefficients-max fusion rule. The greatest mutual in-
formation and QAB/F demonstrate that the best activity-
level measurement is successfully used in NSCT-SF-PCNN.
However, in Fig. 10 the decision map of SF-max is better
than PCNN, it is not consistent with Table 2, in which mu-
tual information and QAB/F of SF-max are smaller than
that of PCNN. That is because we use PCNN in low-
frequency subimage in coefficient-PCNN methods but we
use average rule in SF-max methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 8 SF of high-frequency subimages and the decision maps
of typical activity-level measurements in NSCT domain ((a)

Source image: zoomed out clockA.tif; (b) Source image:
zoomed out clockB.tif; (c) ∼ (d) High-frequency subimages of

(a) and (b) in NSCT domain; (e) ∼ (f) SF of (c) and (d);
(g)∼(j) The decision maps of coefficients max rule, max rule on

coefficient-PCNN, SF-max and maximum rule on SF-PCNN
respectively; (k) Optimal decision map)

Table 2 Comparison of objective criteria of different activity
level measurements in NSCT domain

Images Criteria Coef-max SF-max Coef-PCNN SF-PCNN

MI 6.6761 6.8113 6.9559 7.4598Clock

QAB/F 0.6683 0.6735 0.6869 0.6880

MI 1.5732 1.5843 1.9670 2.1636Tree

QAB/F 0.4828 0.4896 0.5001 0.4972

3.3 Comparisons on typical PCNN-based algo-
rithms

In this section, typical PCNN-based algorithms that
are shift-invariant wavelet-PCNN (SIDWT-PCNN)[15],

contourlet-PCNN[9] are compared with NSCT-SF-PCNN
algorithms. The parameters of PCNN are set the same in
the experiments.

Fig. 9 shows the multifocus image fusion results. NSCT-
SF-PCNN and SIDWT-PCNN outperforms contourlet-
PCNN in visual appearance because contourlet is shift-
variant. Figs. 9 (a) and (c) show the difference between
fused images, which are fused results using SIDWT-PCNN
and NSCT-SF-PCNN, and source image in Fig. 6 (a). It in-
dicates that NSCT-SF-PCNN extracts almost all the good-
focalized part in source images and preserves the detailed
information better than the SIDWT-PCNN.

(a) (b) (c)

(d) (e) (f)

Fig. 9 Multifocus image fusion results ((a)∼(c) Fused images
using SIDWT-PCNN, contourlet-PCNN and NSCT-SF-PCNN

respectively; (d) Difference image between Fig. 9 (a) and
Fig. 6 (a); (e) Difference image between Fig. 9 (b) and Fig. 6 (a);

(f) Difference image between
Fig. 9 (c) and Fig. 6 (a))

Fig. 10 shows the infrared and visible image fusion re-
sults. NSCT-SF-PCNN and contourlet-PCNN outperform
SIDWT-PCNN in visual appearance. The result is con-
sistent with that in [9], especially for infrared and visible
image fusion, in which PCNN is used in contourlet domain.
Figs. 10 (d) and (f) show the difference between fused im-
ages, which are fused results using contourlet-PCNN and
NSCT-SF-PCNN, and source image in Fig. 7 (a). It indi-
cates that NSCT-SF-PCNN extracts the trees better than
contourlet-PCNN in visible image and human image being
labeled with white color in infrared image.

(a) (b) (c)

(d) (e) (f)

Fig. 10 Infrared and visible image fusion results ((a)∼(c)
Fused images using SIDWT-PCNN, contourlet-PCNN and

NSCT-SF-PCNN respectively; (d) Difference image between
Fig. 10 (a) and Fig. 7 (a); (e) Difference image between
Fig. 10 (b) and Fig. 7 (a); (f) Difference image between

Fig. 10 (c) and Fig. 7 (a))

In Table 3 (see next page), all the objective criteria prove
that fused image of the NSCT-SF-PCNN is strongly cor-
related with the source images and more image features,
i.e., edges, are preserved in the fusion process, suggesting
that the proposed NSCT-SF-PCNN is the best one in the
three algorithms. Although in infrared and visible image
fusion, mutual information of SIDWT is larger than that of
NSCT-SF-PCNN, the visual appearance of SIDWT-PCNN
fused image is not obviously good because the fused image
of SIDWT-PCNN retains little information of visible image
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in Fig. 7 (a). When all is said and done, our proposed algo-
rithm outperforms other typical PCNN-based algorithms,
whether in visual observation or objective evaluation crite-
rion.

Table 3 Comparison of objective criteria of PCNN-based
algorithms

Images Criteria SIDWT-PCNN Contourlet-PCNN NSCT-SF-PCNN

MI 6.9105 6. 0527 7.4598Clock

QAB/F 0.6834 0.6363 0.6880

MI 2.5714 1.4840 2.1636Tree

QAB/F 0.4732 0.3893 0.4972

3.4 Numerical experimental results

In order to demonstrate our NSCT-SF-PCNN is promis-
ing for the two applications, six group images in Fig. 11
are fused using methods of DWT[2], SIDWT-PCNN[15],
and Contourlet-PCNN[9], CT-PCNN for short in Table 4.
Because of the limited length of paper, only comparisons
of objective criteria are given in Table 4. It is shown
that NSCT-SF-PCNN is the best fusion algorithm with
the greatest mutual information and QAB/F in multifo-
cus image fusion. In contrast, though the mutual infor-
mation of NSCT-SF-PCNN is lower than that of SIDWT-
PCNN when Figs. 11 (d) and (f) are fused, the QAB/F of
NSCT-SF-PCNN is larger than that of SIDWT-PCNN,
and NSCT-SF-PCNN preserves visible feature better than
SIDWT-PCNN as shown in Fig. 12.

(a) (b) (c)

(d) (e) (f)

Fig. 11 Test images ((a)∼(c) Multifocus images;
(d)∼(f) Visible and infrared images)

Table 4 Comparison of objective criteria of PCNN-based
algorithms

Images Criteria SIDWT-PCNN NSCT-SF-PCNN
(Fig. 11) DWT-max CT-PCNN

MI 5.3948 5.9439 5.2640 6.2315
(a)

QAB/F 0.6429 0.6839 0.6103 0.6885

MI 6.5199 7.3359 6.5603 7.5447
(b)

QAB/F 0.6861 0.7216 0.6650 0.7 232

MI 5.7479 6.6863 6.2849 7.2704
(c)

QAB/F 0.5681 0.6259 0.5652 0.6 273

MI 2.4257 4.0846 2.7957 3.6596
(d)

QAB/F 0.5150 0.5736 0.5317 0.5 859

MI 2.0367 2.5157 1.5856 3.0161
(e)

QAB/F 0.6366 0.5817 0.5145 0.6 666

MI 2.3481 5.6876 4.7955 5.6014
(f)

QAB/F 0.6854 0.7998 0.7918 0.8 141

(a) (b)

(c) (d)

Fig. 12 Fused results of infrared and visible images ((a)∼(b)
The fused results of Fig. 11 (d); (c)∼(d) The fused results of

Fig. 11 (f) using SIDWT-PCNN and NSCT-SF-PCNN,
respectively)

4 Conclusion

In this paper, a spatial frequency motivated PCNN in
NSCT domain, NSCT-SF-PCNN, is proposed. The flexi-
ble multiresolution, anisotropy, and directional expansion
for images of NSCT are associated with global coupling
and pulse synchronization characteristic of PCNN. Further-
more, a spatial frequency motivated PCNN, rather than
pure use of coefficients value in traditional PCNN in image
processing, is presented. Experiments on MSD methods,
activity-level measurements, and typical PCNN-based al-
gorithms demonstrate that the proposed NSCT-SF-PCNN
is successful in multifocus image fusion and visible and in-
frared image fusion.
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