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Tracking Control of Autonomous

Underwater Vehicles with
Internal Moving Mass
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Abstract The trajectory-tracking control problem is inves-
tigated for an autonomous underwater vehicle (AUV) moving
in the vertical plane using an internal point mass and a rear
thruster as actuators. Combined with the dynamics of the point
mass, the AUV is modeled as an underactuated system. A
Lyapunov-based tracking controller is proposed by using back-
stepping approach to stabilize the error dynamics and force the
position errors to a small neighborhood of the origin. Simulation
results validate the proposed tracking approach.
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Traditional actuators of autonomous underwater vehi-
cles (AUVs), such as fins and rudders, rely on relative fluid
motion to provide control forces and torques, which will
lose their control authority at very low speed. As an al-
ternative means of control, moving mass control system
(MMCS) may be invoked because it is entirely enclosed in
the hull of vehicles and is equally effective in different condi-
tions. Furthermore, MMCS can avoid corrosion and biolog-
ical fouling. These advantages make MMCS very suitable
for long-term ocean missions[1].

During the past several years, many researchers have in-
vestigated the applicability of MMCS to space/underwater

vehicles. Menon[2] studied the integrated guidance and con-
trol problem of kinetic warheads actuated by three moving
masses. The ability of an MMCS to control the attitudes
of spinning vehicles and a fixed-trim reentry vehicle were
investigated in [3−4], respectively. In underwater applica-
tions, the authors in [1, 5] studied the problem of stabiliza-
tion for a neutrally buoyant underwater vehicle using in-
ternal rotors and a moving mass as actuators, respectively,
and Leonard and Graver[6] studied the controllability of
buoyancy-propelled and fixed-wing underwater gliders us-
ing movable internal masses as attitude control actuators.
However, except in [1, 5], the dynamics of the system or the
control laws were linearized in these published works.

In this paper, we address the tracking control problem for
AUVs using a rear thruster and an internal movable point
mass as actuators without linearizing the system dynamics.
For simplicity, we restrict our attention to vertical plane
cases. In order to reduce the complexity of the integral
controller designing course, we split it into two steps: we
first calculate the desired value of the thrust force and the
displacement of the point mass for the AUV by regarding
the interacting forces as a part of model uncertainties, and
then, we determine the control force actuating on the point
mass because of the commanded displacement.

Furthermore, since the AUV has two independent control
inputs less than degrees of freedom, the system that con-
tains the AUV and the point mass is underactuated. For
this system, tracking controller using nonlinear Lyapunov-
based techniques is very suitable. Some examples of nonlin-
ear Lyapunov-based trajectory-tracking controllers for un-
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deractuated marine vehicles have been reported in [7-9].
Motivated by the results of [7], we develop a simple nonlin-
ear control law for the tracking problem. Furthermore, we
present a point mass positioning controller by means of a
cascaded approach.

The rest of this paper is organized as follows: in Sec-
tion 1, we describe the dynamic model for the AUV and
the point mass. In Section 2, we present a nonlinear track-
ing control law and discuss the stability of the resulting
closed-loop system. A point mass positioning controller is
designed in Section 3. Section 4 illustrates the performance
of the proposed method and some conclusions are given in
Section 5.

1 AUV model

We model the vehicle as a rigid elliptical hull that en-
closes a movable point mass, as shown in Fig. 1. To de-
scribe the motion of the vehicle, we introduce two coor-
dinate frames that will be used in the following sections.
Oxy is an inertial reference frame (I-frame) fixed in space,
and BxByB is a body-fixed orthonormal frame (B-frame)
with origin located at the center of buoyancy (CB) of the
vehicle. Assume that the movable mass can move along the
BxB-axis in a smooth slot.

Fig. 1 The AUV and an internal movable mass

The total mass of the AUV, m0, contains two terms: mh

is the mass of the hull uniformly distributed throughout
the ellipse, and m is the internal moving point mass. Let s
denote the distance of the moving point mass that offsets
from the CB, and s ∈ [−l/2, l/2], where l is a positive
scalar, denoting the length of the slot. We assume that
s|t=0=0, and thus, the center of mass (CM) of the AUV
initially coincides with the CB.

Let qqq = [x, y]T and θ be the position of the CB in the
I-frame and the orientation of the vehicle, respectively. In
the vertical plane, the kinematic equations of motion for
the AUV can be written as

»
q̇qq

θ̇

–
=

»
R(θ) 0

0 1

– »
ννν
r

–
(1)

where the upper dots represent differentiation with respect
to time. ννν = [u, v]T denotes a vector of the linear velocities
in surge and heave, and r represents the angular velocity
in pitch, decomposed in the B-frame. The matrix R(θ) ∈
R2×2 is a transformation matrix from the B-frame to the
I-frame and can be written in a component form as

R(θ) =

»
cos θ − sin θ
sin θ cos θ

–
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Assume that: 1) the AUV is neutrally buoyant, i.e., m0 =
mh + m is equal to the mass of fluid displaced by the ve-
hicle; 2) the inertia, added mass, and damping matrices
are diagonal, and the drag terms of order higher than two
can be neglected. The second assumption holds because
the AUV introduced in this paper has two planes of sym-
metry, for which the axes of the B-frame coincide with the
principal axes of the displaced fluid, and the vehicle moves
slowly. In reality, most underwater vehicles have fore/aft
non-symmetry, which implies that the off-diagonal terms
of the inertia and damping matrices are nonzero. However,
these terms are smaller than the diagonal terms. Therefore,
the mathematic model of the vehicle moving in the vertical
plane under environmental disturbances and model uncer-
tainties can be expressed as in [10]

8
<
:

m11u̇ = m22vr −Xuu−Xu|u|u|u|+ F + w1 + τd1

m22v̇ = −m11ur − Yvv − Yv|v|v|v|+ w2 + τd2

m33ṙ = (m11 −m22)uv −Nrr −Nr|r|r|r|+ w3 + τd3

(2)
where mii(> 0) are the combination of the vehicle, added
mass and inertia terms, and F denotes the thrust force
along the longitudinal axis of the vehicle, Xu, Xu|u|, Yv,
Yv|v|, Nr, and Nr|r| are the linear and quadratic damp-
ing terms coefficients, wi represent the reacting forces and
torque caused by the movement of the internal point mass
and τdi are bounded disturbances.

As depicted in Fig. 1, the kinetic equations of the internal
point mass can be expressed in a compact form as

m
ˆ
ν̇νν + S(1)

`
ννν + ξξξ + S(1)ξξξr + 2ξ̇ξξ

´
r + ξ̈ξξ

˜
= −τττ + GGGm (3)

where ξξξ = [s, 0]T is a radius vector of the point mass in
the B-frame, and S(1) represents a skew-symmetric matrix

and is given by S(1) =

»
0 −1
1 0

–
, τττ denotes a vector of the

servo forces to actuate the vehicle on the point mass and
GGGm = [−mg sin θ,−mg cos θ]T is a vector of the gravity of
the point mass expressed in the B-frame.

Substituting (3) into (2) and rearranging, we can derive
the accurate expressions about w1, w2, and w3 as

8
<
:

w1 = −m(s̈− sr2)
w2 = −m(2ṡr + sṙ)
w3 = s(−mg cos θ −mv̇ −mur + w2)

(4)

In (2), there is a single explicit control force F , which
makes it hard to design a control law for the AUV. Com-
bining it with (4), we choose the variable s as another con-
trol parameter usable to produce a control torque. In order
to express s explicitly, we can split the term w3 into two
parts: w3 = −sA+w′3, where A = m(g cos θ + v̇ +ur) and
w′3 = sw2 are the linear and nonlinear terms about s, re-
spectively (In several conditions, the term (g cos θ+ v̇+ur)
may be equal to zero. To avoid this, we can regulate the
expressions of A and w′3 at real time in the course of cal-
culation). Thus, we can rewrite (2) in a more concise form,
for convenient in the following discussions, as


Mν̇νν = −S(1)Mνννr −D(ννν)ννν + gggνF + www
m33ṙ = (m11 −m22)uv −Nrr −Nr|r|r|r| − sA + w′′3

(5)
where M = diag{m11, m22} is the generalized mass matrix,
D(ννν) = diag{Xu + Xu|u|, Yv + Yv|v|}, gggν = [1, 0]T, www =

[w1+τd1, w2+τd2]
T, and w′′3=w′3+τd3.

2 Controller design and analysis
In this section, we seek to design a trajectory-tracking

control law for system (5) that forces it to track a given
smooth geometric path in the vertical plane. In order to
simplify the subsequent control development, we regard the
terms w1, w2, and w′3 as a part of model uncertainties to
be determined in the next section.

Let qqqd = [xd, yd]T denote the desired position of the CB,
where we define the following global invertible transforma-
tion

eeeq = RT(qqq − qqqd)

which expresses the tracking error (qqq− qqqd) in the B-frame.
RT is the transpose of the matrix R(θ) and its time deriva-

tive ṘT = −S(1)RTr. The time derivative of eeeq becomes

ėeeq = −S(1)eeeqr + ννν −RTq̇qqd (6)

In the rest of this section, for the sake of clarity, we split
our design procedure into two steps.

Step 1. (Design of the surge force F ): We start by
defining a Lyapunov function candidate as

V1 =
1

2
eeeT

q eeeq

and computing its time derivative along the system trajec-
tories to obtain

V̇1 = eeeT
q (ννν −RTq̇qqd) (7)

We can treat ννν as a virtual control to stabilize the tracking
error eeeq. Unlike the standard compensating method, in
order to reduce the complexity of the controller expressions,
we will choose a simpler virtual control law νννd for ννν as

νννd = −keM
−1eeeq

with ke > 0 a design parameter to be determined later.
Introducing the new error variable zzz1 = ννν − νννd which we
would derive to zero, (7) gives

V̇1 = −keeee
T
q M−1eeeq + eeeT

q zzz1 − eeeT
q RTq̇qqd (8)

By taking the time derivative of zzz1 and using (5), we get

Mżzz1 = −S(1)Mzzz1r + gggνF + hhh(·) (9)

where
hhh(·) = −D(ννν)ννν + www + ke(ννν −RTq̇qqd)

As introduced in [7], because of the coupling of the trans-
lation dynamics and the rotational inputs, the error zzz1 can
not be ensured to converge to zero, yet it can be always
forced to a small neighborhood of the origin. To this end,
we define a new error variable zzz2 = zzz1 − δδδ which we will
derive to zero, and in which δδδ ∈ R2×1 is a given constant
vector. Substituting zzz2 into (8), we obtain

V̇1 = −keeee
T
q M−1eeeq + eeeT

q δδδ − eeeT
q RTq̇qqd + eeeT

q zzz2

To stabilize the error vector zzz2, we consider the following
Lyapunov function candidate

V2 = V1 +
1

2
zzzT

2 M2zzz2 =
1

2
eeeT

q eeeq +
1

2
zzzT

2 M2zzz2

The time derivative of V2 along the system trajectories
can be expressed as

V̇2 =−keeee
T
q M−1eeeq + eeeT

q δδδ − eeeT
q RTq̇qqd +

zzzT
2 (MBσσσ + Mhhh(·) + eeeq) (10)



No. 10 LI Jia-Wang et al.: Tracking Control of Autonomous Underwater Vehicles · · · 1321

where B =
ˆ
gggν − S(1)Mδδδ

˜ ∈ R2×2, σσσ = [F, r]T is regarded

as a virtual control. Letting δδδ = [δ1, δ2]
T be nonzero, and

using (5), we can rewrite B in a component form as

B =

»
1 m22δ2

0 −m11δ1

–

One can see that the matrix B will be made full rank if and
only if δ1 6= 0. To stabilize the error variable zzz2, we set σσσ
at

σσσ = B−1(−hhh(·)−M−1eeeq)− kzM−1zzz2

where kz is a positive constant to be chosen later. Now, we
set the surge force F at

F = [1, 0]σσσ (11)

Step 2. (Design of the displacement s): In the end of
Step 1, we regard the angular velocity r as a part of the
virtual control σσσ. Since r is not a true control, we need to
introduce a new error variable z3 = r− [0, 1]σσσ which should
be set at zero. Now, we can rewrite (10), with F given by
(11), as

V̇2 =−keeee
T
q M−1eeeq + eeeT

q − eeeT
q RTq̇qqd −

kzzzz
T
2 zzz2 − zzzT

2 MS(1)Mδδδz3 (12)

Therefore, our objective in this step is to stabilize the error
variable z3. Considering the following Lyapunov function
candidate

V3 = V2 +
1

2
m33z

2
3 =

1

2
eeeT

q eeeq +
1

2
zzzT

2 M2zzz2 +
1

2
m33z

2
3

and taking the time derivative, we obtain

V̇3 =−keeee
T
q M−1eeeq + eeeT

q δδδ − eeeT
q RTq̇qqd − kzzzz

T
2 zzz2 +

z3

`
h1(·)− sA− [0, m33]σ̇σσ − zzzT

2 MS(1)Mδδδ
´

(13)

where h1(·) = (m11 −m22)uv−Nrr−Nr|r|r|r|+ w′′3, and
σ̇σσ stands for the time derivative of σσσ. If we then set s at

s =
1

A

`
h1(·)− [0, m33]σ̇σσ − zzzT

2 MS(1)Mδδδ + ksz3

´
(14)

where ks is a positive constant, and the time derivative of
V3 becomes

V̇3 = −keeee
T
q M−1eeeq − kzzzz

T
2 zzz2 − ksz

2
3 +eeeT

q δδδ−eeeT
q RTq̇qqd (15)

It should be noted that the last two terms in (15) have
uncertain signs. Before making further analysis, consider-
ing the practical operating conditions, we assume that q̇qqd is
bounded. For notation simplicity, we define eeeq = [e1, e2]

T

and RTq̇qqd = [γ1, γ2]
T. Then, (15) can be expanded as

V̇3 =−ke

„
1

m11
e2
1 +

1

m22
e2
2

«
− kzzzz

T
2 zzz2 − ksz

2
3 +

e1(δ1 − γ1) + e2(δ2 − γ2) (16)

We split the coefficient ke into three parts: ke = k1+k2+k3,
where ki > 0 are positive scalar, and then rearrange (16)
as

V̇3 = −k1eee
T
q M−1eeeq − kzzzz

T
2 zzz2 − ksz

2
3 −

k2

„
e1

m11
− m11

2k2
δ1

«2

− k2

„
e2

m22
− m22

2k2
δ2

«2

+
‖Mδδδ‖2

4k2
−

k3

„
e1

m11
+

m11

2k3
γ1

«2

− k3

„
e2

m22
+

m22

2k3
γ2

«2

+
‖Mγγγ‖2

4k3
(17)

where ‖·‖ represents the Euclidean norm and γγγ = [γ1, γ2]
T.

Since M is a constant positive definite matrix and δδδ is a
given constant vector, the terms Mδδδ and Mγγγ are always
bounded, i.e., there exists a positive constant ζ such that
‖Mδδδ‖2/4k2 + ‖Mγγγ‖2/4k3 ≤ ζ. Thus, (17) becomes

V̇3 ≤−k1eee
T
q M−1eeeq − kzzzz

T
2 zzz2 − ksz

2
3 + ζ ≤ −λV3 + ζ

where λ = min


2k1

m22
,

2kz

m2
22

,
2ks

m33

ff
because m11 < m22

holds, and hence, by employing the Comparison Lemma[11],
we have

V3(t) ≤ V3(0)e−λt +
ζ

λ
, t ≥ 0 (18)

which implies that V3 globally converges to a bounded ball
of radius ζ/λ around zero, and hence the states of error
dynamics (eeeq, zzz2, z3) remain in a bounded set about the
origin.

Remark 1. In reality, the physical actuators are subject
to saturation because of their maximum and minimum lim-
its, i.e., F ∈ [Fmin, Fmax] and s ∈ [smin, smax], which can
affect the stabilization of the error dynamics. To depict
this property, we define a saturation function as

sat(a) =

8
<
:

amin, a < amin

a, a ∈ [amin, amax]
amax, a > amax

where amin and amax are the minimum and maximum value
of a, respectively.

As mentioned above, a system may be just locally stable
because of the saturation of control inputs. For simplicity,
in this paper, we do not seek to design an optimal control
law for system (5) to reduce the undesired effects of the in-
puts constraints, but first estimate a region of initial states
errors which can be forced to around zero by approxima-
tively calculating (11) and (14) with given inputs bounds
and control gains.

3 Point mass positioning control
Actually, the displacement s, which determined by the

force w1 from (4), is not a real control input. To accomplish
the control development, we design a servo control law for
w1 in this section. Since the term s in (14) is actually the
commanded displacement of the point mass, for the sake of
clarity, we use a new character sc to replace it.

Before sc is invariant in each step of the control course,
i.e., its first time derivative or more is zero. This is because
the point mass would prefer to keep rest if its commanded
displacement is completed in one time step.

Let zs = s−sc be the point mass positioning error. Then
using (4), we obtain

żs = ṡ, z̈s = s̈ = sr2 − 1

m
w1 (19)

To make the error zs converge to zero, we introduce a
virtual control law for w1

wd
1 = m

`
kdṡ + sr2 + kpzs

´
(20)

in which kd and kp are positive constant gains. Then, the
dynamics of zs is given by

z̈s + kdżs + kpzs = 0

which implies that zs converges to zero. However, in reality,
the executive devices that actuated on the moving mass
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always respond sluggishly. To depict this character, we
model the devices dynamics as

Tẇ1 + w1 = w1c (21)

where T is a positive constant, and w1c represents the com-
manded input. Let w1e = w1 − wd

1 be the control error.
Then we get

ẇ1e =
1

T
(w1c − w1)− ẇd

1 (22)

We set w1c at w1c = w1 + Tẇd
1 − kwTw1e, where kw is a

positive scalar, and thus, (22) can be rewritten as

ẇ1e = −kww1e (23)

From (19)∼ (23), we can express the dynamics of the
point mass subsystem in a cascaded form

»
żs

z̈s

–
=

»
0 1
−kp −kd

– »
zs

żs

–
+

»
0
1

–
w1e

ẇ1e = −kww1e

(24)

As discussed in [12], subsystem (24) is globally asymp-
totically stable, which implies that limt→∞ zs = 0.

Remark 2. We separate the control designing course
of w1 from that of the AUV tracking problem because this
operation can reduce the complexity of the whole design
procedure without affecting the stability of the resulting
closed-loop system. Since the length of the slot l is short
because of the limitation of the hull, implying that zs and
its time derivatives are small, we can assume that the sat-
uration of w1 will not occur in practice.

Remark 3. At each time step in our numerical compu-
tation, we set the term s and its time derivative ṡ in w2 and
w3 at the value at the previous step. This operation facil-
itates the designing course because w2 and w3 are already
known now. The additional errors in the model aroused
by this simplification are tolerable and would not affect the
main results we have received.

4 Numerical results
To illustrate the performance of the proposed method,

we present some numerical results in this section. The pa-
rameters of the AUV are given as[10, 13]: m11 = 215 kg,
m22 = 265 kg, m33 = 80 kg · m2, Xu = 70 kg/s, Xu|u| =
100 kg/m, Yv = 100 kg/s, Yv|v| = 200 kg/m, Nr =

50 kg ·m2/s, Nr|r| = 100 kg · m2. Moreover, the control
inputs are limited at F ∈ [0, 500]N and l = 0.2m. The
point mass m = 1.0 kg. The simulation is implemented on
Simulink by using a fixed-step fourth order Runge-Kutta
method whose step size is 0.1 s.

The parameters of the desired trajectory to be tracked
are given as: xd = 0.01t + 0.1 and

yd =

8
<
:
−0.2, 0 ≤ t ≤ 300
2 cos(0.01t)− 2.2, 300 < t ≤ 300 + 100π
−4.2, t > 300 + 100π

It is worth noting that the rest parameters of the desired
trajectory are not required to be known because of the pro-
posed controller. For the AUV, we choose the initial condi-
tions as

`
x(0), y(0), θ(0), u(0), v(0), r(0)

´
= (0, 0, 0, 0, 0, 0)

which implies that the AUV starts from rest and the initial
position errors are xe(0) = −0.1m and ye(0) = 0.2 m. The
set error vector δδδ = [−0.01, 0]T and the control parameters
are chosen as follows: ke = kz = ks = 30, kd = 1, kp = 0.8,

and kw = 10. We first consider the case where the dis-
turbances τdi = 0, 1 ≤ i ≤ 3. The numerical results are
shown in Figs. 2∼ 4. It can be seen that the tracking errors
converge and stay at a small neighborhood of zero.

Fig. 2 The trajectories of the AUV

Fig. 3 The tracking errors

Fig. 4 The displacements of the point mass

To illustrate the robustness properties of the designed
trajectory-tracking methodology, we present some results
under external disturbances and model uncertainties, i.e.,
the disturbances τdi 6= 0, 1 ≤ i ≤ 3. We assume that there
are inaccuracies of the order of 5% in the AUV model. The
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initial conditions and the desired trajectory are the same as
those of the previous example. The control parameters are
chosen as follows: ke = kz = ks = 100, kd = 1, kp = 0.8,
and kw = 15. The results are shown in Figs. 5∼7. One can
see that the errors still within a small neighborhood of the
origin.

Fig. 5 The trajectories of the AUV

Fig. 6 The tracking errors

Fig. 7 The displacements of the point mass

Note that the desired velocity of the AUV in these ex-
amples is

p
ẋ2

d + ẏ2
d < 0.025m/s. Moreover, the maximum

magnitude of torque in yaw is required to be more than

1.0N ·m, and hence the conventional actuators such as fins
and rudders will lose their effectiveness in this case.

5 Conclusion
In this paper, the problem of trajectory-tracking was in-

vestigated for an AUV moving in the vertical plane with
the aid of an internal moving mass. Combined with the
dynamics of the point mass, the AUV was modeled as an
underactuated system. A Lyapunov-based tracking control
law was proposed by using backstepping approach to guar-
antee the tracking errors to converge and remain in a small
neighborhood about zero. The numerical results showed
that the proposed method has good tracking performance
and a certain robustness against modeling errors.
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