
Vol. 33, No. 9 ACTA AUTOMATICA SINICA September, 2007

An Improved Heuristic Recursive Strategy Based on

Genetic Algorithm for the Strip Rectangular
Packing Problem

ZHANG De-Fu1 CHEN Sheng-Da1 LIU Yan-Juan1

Abstract An improved heuristic recursive strategy combining with genetic algorithm is presented in this paper. Firstly, this
method searches some rectangles, which have the same length or width, to form some layers without waste space, then it uses the
heuristic recursive strategies to calculate the height of the remaining packing order and uses the evolutionary capability of genetic
algorithm to reduce the height. The computational results on several classes of benchmark problems have shown that the presented
algorithm can compete with known evolutionary heuristics. It performs better especially for large test problems.

Key words Strip packing problems, heuristic, recursive, genetic algorithm

1 Introduction

Many industrial applications, which belong to cutting
and packing problems, have been found. Each application
incorporates different constraints and objectives. For ex-
ample, in wood or glass industries, rectangular components
have to be cut from large sheets of material. In warehousing
contexts, goods have to be placed on shelves. In newspapers
paging, articles and advertisements have to be arranged in
pages. In the shipping industry, a batch of objects of var-
ious sizes has to be shipped to the maximum extent in a
larger container, and a bunch of optical fibers has to be
accommodated in a pipe with perimeter as small as possi-
ble. In very-large scale integration (VLSI) floor planning,
VLSI has to be laid out. These applications have a similar
logical structure, which can be modeled by a set of pieces
that must be arranged on a predefined stock sheet so that
the pieces do not overlap with one another, so they can be
formalized as the packing problem [1]. For more extensive
and detailed descriptions of packing problems, the reader
can refer to [1∼3].

A two-dimensional strip rectangular packing problem is
considered in this paper. It has the following characteris-
tics: a set of rectangular pieces and a larger rectangle with
a fixed width and infinite length, designated as the con-
tainer. The objective is to find a feasible layout of all the
pieces in the container that minimizes the required con-
tainer length and, where necessary, takes additional con-
straints into account. This problem belongs to a subset of
classical cutting and packing problems and has been shown
to be non-deterministic polynomial (NP) hard[4, 5]. Opti-
mal algorithms for orthogonal two-dimension cutting were
proposed in [6, 7]. Gilmore and Gomory[8] solved prob-
lem instances to optimality by linear programming tech-
niques in 1961. Christofides and Whitlock[9] solved the
two-dimensional guillotine stock cutting problem to opti-
mality by a tree-search method in 1977. Cung et al.[10]

developed a new version of the algorithm proposed in Hifi
and Zissimopolous that used a best-first branch-and-bound
approach to solve exactly some variants of two-dimensional
stock-cutting problems in 2000. However, these algorithms
might not be practical for large problems. In order to solve
large problems, some heuristic algorithms were developed.

Received June 20, 2006; in revised form October 24, 2006
Supported by Academician Start-up Fund (X01109), 985 Informa-

tion Technology Fund (0000-X07204) in Xiamen University
1. Department of Computer Science, Xiamen University, Xiamen

361005, P.R. China
DOI: 10.1360/aas-007-0911

The most documented heuristics are the bottom-left (BL),

bottom-left-fill (BLF) methods, and other heuristics[11∼13].
Although their computational speed is very fast, the so-
lution quality is not desirable. Recently, genetic algo-
rithms and its improved algorithms for the orthogonal pack-
ing problem were proposed because of their powerful op-
timization capability[14∼17]. Kroger[14] used genetic algo-
rithm for the guillotine variant of bin packing in 1995.
Jakobs[15] used a genetic algorithm for the packing of poly-
gons using rectangular enclosures and a Bottom-left heuris-
tic in 1996. Liu et al.[16] further improved it. Hop-
per and Turton[18] evaluated the use of the BLF heuris-
tic with genetic algorithms on the nonguillotine rectangle-
nesting problem in 1999. In addition, an empirical in-
vestigation of meta-heuristic and heuristic algorithms of
the strip rectangular packing problems was given by [19].
Recently, some new models and algorithms were devel-
oped by [20∼26]. For example, quasi-human heuristic[20],

constructive approach[21, 22], a new placement heuristic[23],
heuristic recursion (HR) algorithm[24], and hybrid heuristic

algorithms[25, 26] were developed. These heuristics are fast
and effective, especially, the best fit in [23] not only is very
fast, but also finds better solutions than some well-known
metaheuristics.

In this paper, an improved heuristic recursive algorithm
that combines with genetic algorithm is presented to solve
the orthogonal strip rectangular packing problem. The
computational results on a class of benchmark problems
show that this algorithm can compete with known evolu-
tionary heuristics, especially in large test problems.

The rest of this paper is organized as follows. In Section
2, a clear mathematical formulation for the strip rectangu-
lar packing problem is given. In Section 3, the heuristic
recursive algorithm is presented, and an improved heuris-
tic recursive algorithm (IHR) is developed in detail. In
Section 4, the GA+IHR algorithm is proposed. Computa-
tional results are described in Section 5. Conclusions are
summarized in Section 6.

2 Mathematical formulation of the
problem

Given a rectangular board of given width and a set of
rectangles with arbitrary sizes, the strip packing problem
of rectangles is to pack each rectangle on the board so that
no two rectangles overlap and the used board height is min-
imized. This problem can also be stated as follows.

912 ACTA AUTOMATICA SINICA Vol. 33

Given a rectangular board with given width W , and n
rectangles with length li and width wi, 1 ≤ i ≤ n, let
(xli, yli) denote the top-left corner coordinates of rectangle
i, and (xri, yri) the bottom-right corner coordinates of rect-
angle i. Other symbols are similar to [24]. For all 1 ≤ i ≤ n,
the coordinates of rectangles must satisfy the following con-
ditions:

1) (xri − xli = li and yli − yri = wi) or (xri − xli = wi

and yli − yri = li);
2) For all 1 ≤ j ≤ n, j 6= i, rectangle i and j can not

overlap, namely, xri ≤ xlj or xli ≥ xrj or yri ≥ ylj or
yli ≤ yrj ;

3) xL ≤ xli ≤ xR, xL ≤ xri ≤ xR and yR ≤ yli ≤
h, yR ≤ yri ≤ h.

The problem is to pack all the rectangles on the board
such that the used board height h is minimized.

It is noted that for orthogonal rectangular packing prob-
lems the packing process has to ensure the edges of each
rectangle are parallel to the x- and y- axes, respectively,
namely, all rectangles can not be packed aslant. In addi-
tion, all rectangles except the rectangular board are allowed
to rotate 90 degrees.

3 IHR algorithm

The HR algorithm for the strip rectangular packing prob-
lem was presented in [24]. It follows a divide-and-conquer
approach: break the problem into several subproblems that
are similar to the original problem but smaller in size, solve
the subproblems recursively, and then combine these solu-
tions to create a solution to the original problem. The HR
algorithm is very simple and efficient, and can be stated as
follows:

1) Pack a rectangle into the space to be packed, and
divide the unpacked space into two subspaces.

2) Pack each subspace by packing it recursively. If the
subspace size is small enough to only pack a rectangle, then
just pack this rectangle into the subspace in a straightfor-
ward manner.

3) Combine the solutions to the subproblems for the so-
lution of the rectangular packing problem.

In order to enhance the performance of the HR algo-
rithm, the author in [18] presented some heuristic strate-
gies to select a rectangle to be packed, namely, the rect-
angle with the maximum area is given priority to pack. In
detail, unpacked rectangles should be sorted by nonincreas-
ing ordering of area size. The rectangle with maximum area
should be selected to pack first if it can be packed into the
unpacked subspace. In addition, the longer side of the rect-
angle to be packed should be packed along the bottom side
of the subspace.

It is the disadvantage of the HR algorithm that may have
waste space in each layer (See Fig. 1). In order to overcome
this disadvantage, some layers without waste space are first
considered. Some definitions are given to clearly describe
the idea of the improved algorithm.

Definition 1. The reference rectangle is the rectangle
that is packed firstly and can form one layer with other
rectangles, and its short edge is the height of that layer.

Definition 2. The combination layer is the layer that
has no waste space, and the rectangles packed into it have
the same height as the height of the layer and are spliced
together one by one along the direction of W . The sum of
the edge length of the rectangles along the W direction is
the combination width.

From Fig. 1 to Fig. 4, each rectangle at the top of the
container is the referee rectangle. The first layer in Fig. 1
is not a combination layer because it has waste space. The
first layer in Fig. 2 is a combination layer because it has
no waste space and the spliced rectangles have the same
width or length as the height of the layer. Although the
second layer in Fig. 2 has no waste space, it is not a com-
bination layer because the two middle rectangles are not
spliced along the direction of W . By the definition of the
combination layer, the combination width is W . If some
combination layers are found before further computation,
then they may decrease the cost of computation because
the rectangles already packed into these combination lay-
ers will not be considered in the future.

From the above discussion, it is very important to find
the combination layer. Given a packing ordering, the pro-
cedure of finding the combination layer is given as follows.

Find the first unpacked and unreferenced rectangle as
the reference rectangle, and put this rectangle into a two-
dimensional array. Then seek downwards from the refer-
ence rectangle orderly. If one can find a rectangle whose
length or width is equal to the width of the reference rect-
angle, then put this rectangle into the two-dimensional ar-
ray, repeat this until a combination layer or no combination
layer is found. Repeat the above process until all rectan-
gles are packed otherwise no rectangle can be the reference
rectangle. In this process, the number of rectangles, which
have been packed in the current layers, must be recorded.
Finally, the number of all the combination layers must be
recorded. The steps of the combination operator can be
stated as follows:

Combination ()
Repeat

Find the first unpacked and unreferenced
rectangle as the reference rectangle, and put this
rectangle into a two-dimensional array;
For i = current position to n

If (the width or the length of rectangle i is
equal to the width of the reference rectangle)

If (combination width < W)
Put the rectangle into the two-dimensional
array;

Else if (combination width = W)
Pack all the rectangles of the

No. 9 ZHANG De-Fu et al.: An Improved Heuristic Recursive Strategy Based on Genetic Algorithm for · · · 913

two-dimensional array on the container;
Break;

Record the number of all packed rectangles;
Until all rectangles are packed or no rectangle is the
reference rectangle;

Record the number (Num) of all the combination layers;

So, the IHR algorithm can be stated as follows:
Step 1. The combination layers are searched.
Step 2. Pack the remaining rectangles to the container

by HR algorithm.
By intuition, the more the number of the combination

layers is, the faster the computational speed is. However,
it is not always true that more combination layers can ob-
tain a better solution. From Fig. 1 to Fig. 4, we know that
the best combination layer number is 1. Fig. 1 has no com-
bination layer, but layer 1, layer 3, and layer 4 waste a little
space. Fig. 2 has one combination layer and is the optimal
solution. Fig. 3 has two combination layers but layer 3 and
layer 4 waste a little space. Fig. 4 has three combination
layers, but layer 4 and layer 5 waste a little space.

4 GA+IHR

4.1 Genetic algorithm (GA)

GA is a heuristic method used to find approximate solu-
tions to hard optimization problems through application of
the principles of evolutionary biology to computer science.
It is modeled loosely on the principles of the evolution via
natural selection, which use a population of individuals that
undergo selection in the presence of variation inducing op-
erators such as recombination (crossover) and mutation. In
order to run GA, we must be able to create an initial pop-
ulation of feasible solutions. The initial population is very
important for achieving a good solution. There are many
ways to do this based on the form of the problems. The
evolution starts from a population of completely random in-
dividuals and happens in generations. In each generation,
the fitness of the whole population is evaluated. Multiple
individuals are stochastically selected from the current pop-
ulation and are modified to form a new population, which
becomes current population in the next iteration of the
algorithm. Further detailed theoretical and practical de-
scriptions of genetic algorithm, the interested reader can
refer to [27].

Combining GA with IHR, the GA+IHR algorithm to
solve the strip rectangular packing problem can be stated
as follows:

GA+IHR()
Sort all rectangles by non-increasing ordering of area size;
Combination ();
For i = 0 to Num

Initialization ();
For j = 1 to Number

For k = 1 to N/2
Select two individuals in the parents
randomly, then crossover with probability
Pc or copy with probability (1− Pc) to
create two middle offspring;
Mutate the middle offspring with
probability Pm;
Compare the parent and the middle offspring,
if the fitness of the middle offspring is less than
the parent′s, we accept it as new offspring,
otherwise we accept it with probability Pb or
accept the parent with probability (1− Pb);

Select the best solution from the parents;
Select the worse solution from the new
generation;

Replace the worse solution with the best
solution;

Save the best solution acquired from combination
layer i to array A;

Select the best solution from array A;

where Num is the number of all the combination layers;
Number is the iteration number of genetic algorithm; N
is the number of population; Pc = 0.8, Pm = 0.2, but
Pm will increase as the parent chromosomes become more
alike, Pb = 0.33. The fitness value of genetic algorithm is
calculated by HR algorithm. The required container length
is the sum of combination height and current fitness value.

4.2 Initialization

The GA is used to optimize the solution for unpacked
rectangles. The fitness value of GA is calculated by HR
algorithm. In this paper, a string of integers, which forms
an index into the set of rectangles, is used, and then the
HR strategy is used to create the sequence of the first indi-
viduals, and the sequence is divided into two equal parts,
the two parts of the first individuals are then permuted to
obtain N −1 individuals (N is the size of population). The
method of the permutation is to produce a point in each
range randomly and exchange the position of the point for
its neighbor. This initialization method can keep the diver-
sification of each individual in the population. At the same
time, it can keep the individual, which has better fitness.
From the experiment results, we know that the method has
better effect.

4.3 Crossover

The role of the crossover operator is to allow the advanta-
geous traits to spread throughout the population such that
the population as a whole may benefit from this chance dis-
covery. The steps of the crossover operator are as follows:

1) Choose two individuals Parent 1 and Parent 2 from the
parents randomly.

2) Get the items of individual Child 1 from Parent 1 and
Parent 2 alternately. Namely, if the sequence number of
the Child 1 is odd, find an item orderly in Parent 1 until
the item is different from all the items in Child 1, otherwise
find an item orderly in Parent 2 until the item is different
from all the items in Child 1. When the number of Child 1
is n, a new individual is created successfully.

3) Similarly, get the items of individual Child 2 from
Parent 2 and Parent 1 alternately. Namely, if the sequence
number of the Child 2 is odd, find an item orderly in Par-
ent 2 until the item is different from all the items in Child 2,
otherwise find an item orderly in Parent 1 until the item is
different from all the items in Child 2. When the number
of Child 2 is n, a new individual is created successfully.

As an example of crossover, suppose two individuals are
already selected:

Parent 1: 5 3 2 6 7 8 4 1
Parent 2: 8 6 5 1 7 3 2 4

According to the steps of the crossover operator, the
sequences of the children can be obtained:

Child 1: 5 8 3 6 2 1 7 4
Child 2: 8 5 6 3 1 2 7 4

4.4 Mutation

In each individual A, two different points are chosen ran-
domly, and the sequence within two points is inversed, then

914 ACTA AUTOMATICA SINICA Vol. 33

in the appointed iteration step, judge the fitness of the new
individual B, if the fitness of B is less than that of A, B is
accepted.

As an example of mutation, suppose two mutation points
(3 and 6) are already selected:

A: 2 4 5 8 7 1 3 6
After mutation, we can get the new individual

B: 2 4 1 7 8 5 3 6
Mutation is adaptive, that is, the mutation rate increases

as the parent chromosomes become more alike.

4.5 Replacement

After the operations of crossover and mutation, a set of
solutions are produced. For keeping the best fitness and
quickening the speed of convergence, a best solution is se-
lected from the set of solutions, and it is saved to the next
generation in each iteration step.

5 Computational results

In order to compare the relative performance of the pre-
sented GA+IHR with other published heuristic and meta-
heuristic algorithms, several test problems taken from the
literature are used. Perhaps the most extensive instances
given for this problem are found in [19], where 21 prob-
lem instances are presented in seven different sized cate-
gories ranging from 16 to 197 items. The optimal solu-
tions of these 21 instances are all known. Table 1 (see next
page) presents an overview of the test problem Class 1 from
[19]. As we wanted to extensively test our algorithm, other
test problems were generated at random. Table 2 shows an
overview of the test problem Class 2 generated randomly
with known optimal solution. The problem Class 2 can be
accessed in [23].

In order to verify the performance of GA+IHR, two best
meta-heuristic GA+BLF and SA+BLF[23], Best fit[13], and
HR[19] are selected. The computational results are listed in
Tables 3 and 4. 20 iterative times are chosen for GA and
80 iterative times are chosen in the mutation operation.

On this test problem Class 1, as listed in Table 3, Gap
of GA+IHR ranges from 0.83 to 4.44 with the average Gap
2.06. The average Gaps of GA+BLF, SA+BLF, Best fit,
and HR are 4.57, 4, 5.69, and 3.97, respectively. The av-
erage Gap of GA+IHR is lower than those of GA+BLF,
SA+BLF, Best fit, and HR. And as listed in Table 4, the
average running time of GA+IHR is also lower than those
of GA+BLF and SA+BLF, but is larger than that of Best
fit and HR. The packing results can be seen in Fig. 5 and
Fig. 6, where L denotes the optimal height. The heights of
C11, C12, C13, and C72 using GA+IHR are 20, 21, 21, and
241, respectively. GA+IHR can find the optimal heights for
C11, C23, and C32.

In order to extensively test the performance of our al-
gorithm for randomly generated instances, especially for
larger instances, 12 problem instances ranging from 10 to
500 were generated at random. The computational results
are listed in Table 5. For such problem, 100 iterative times
are chosen for the GA and 10 iterative times are chosen in
the mutation operation. Although our algorithm can ob-
tain a better solution, it needs much time, especially for
large problems. So for N12, 40 iterative times are chosen

for the GA and 10 iterative times are chosen in the muta-
tion operation. From Table 5, we observe that the running
time is acceptable. What is more, the Gap is better than
others.

Fig. 5 Packed results of C1 for GA+IHR

Fig. 6 Packed results of C72 for GA+IHR

6 Conclusions

In this paper, the GA+IHR algorithm for the orthogo-
nal stock-cutting problem has been presented. IHR is very
simple and intuitive, and can solve the orthogonal stock-
cutting problem efficiently. GA is an adaptive heuristic
search algorithm. It has the capability of global search
within the solution space. The idea of combination layers
to reduce the number of unpacked rectangles has been used.
During the process of iteration search, HR is called repeat-
edly to calculate the height of an individual. As we know,
finding the optimal solution is more difficult for the packing
problem as increasing the size of problem. But it can be
overcome by using the characteristic of GA. The computa-
tional results have shown that we can obtain the desirable
solutions within acceptable computing time by combining
GA with IHR. So GA+IHR can compete with other evolu-
tion heuristic algorithms, especially for large test problems,
it performs better. So GA+IHR may be of considerable
practical value to the rational layout of the rectangular
objects in the engineering fields, such as the wood, glass,
and paper industry, the ship building industry, and textile
and leather industry. Future work is to further improve
the performance of GA+IHR and minimize the influence
of the parameters selection, and extend this algorithm for
three-dimensional rectangular packing problems.

No. 9 ZHANG De-Fu et al.: An Improved Heuristic Recursive Strategy Based on Genetic Algorithm for · · · 915

Table 1 Test problem Class 1

Problem category Number of items: n Optimal height Object dimension

C1(C11,C12,C13) 16(C11,C13),17(C12) 20 20×20

C2(C21,C22,C23) 25(C21,C22,C23) 15 15×40

C3(C31,C32,C33) 28(C31,C33),29(C32) 30 30×60

C4(C41,C42,C43) 49(C41,C42,C43) 60 60×60

C5(C51,C52,C53) 73(C51,C52,C53) 90 90×60

C6(C61,C62,C63) 97(C61,C62,C63) 120 120×80

C7(C71,C72,C73) 196(C71,C73),197(C72) 240 240×160

Table 2 Test problem Class 2

Problem category Number of items: n Optimal height Object dimension

N1 10 40 40×40

N2 20 50 30×50

N3 30 50 30×50

N4 40 80 80×80

N5 50 100 100×100

N6 60 100 50×100

N7 70 100 80×100

N8 80 80 100×80

N9 100 150 50×150

N10 200 150 70×150

N11 300 150 70×150

N12 500 300 100×300

Table 3 Gaps of GA+BLF, SA+BLF, Best fit, HR, and GA+IHR for the test problem Class 1

C1 C2 C3 C4 C5 C6 C7 Average

GA+BLF 4 7 5 3 4 4 5 4.57

SA+BLF 4 6 5 3 3 3 4 4

Best fit 11.67 6.7 9.9 3.87 2.93 2.5 2.23 5.69

HR 8.33 4.45 6.67 2.22 1.85 2.5 1.8 3.97

GA+IHR 3.33 4.44 2.22 1.67 1.11 0.83 0.83 2.06

Table 4 Average running time of GA+BLF, SA+BLF, and GA+HR

C1 C2 C3 C4 C5 C6 C7 Average

GA+BLF 4.61 9.22 13.83 59.93 165.96 396.46 3581.97 604.57

SA+BLF 3.227 11.064 18.44 52.13 530.15 1761.02 19274.41 3107.2

Best fit 0.0 0.0 0.0 0.00 0.003 0.005 0.007 0.005

HR 0 0 0.03 0.14 0.69 2.21 36.07 5.59

GA+IHR 0.88 1.52 2.24 9.56 30.04 65.56 426.04 76.55

Table 5 Gaps of GA+BLF, SA+BLF, Best fit, HR, and GA+IHR for the test problem Class 2

n Optimal height
GA+BLF SA+BLF BF Heuristic GA+IHR

h Time(s) h Time(s) h Time(s) h Time(s)

N1 10 40 40 1.02 40 0.24 45 <0.01 45 0.68

N2 20 50 51 9.2 52 8.14 53 <0.01 54 3.32

N3 30 50 52 2.6 52 39.5 52 <0.01 51 6.18

N4 40 80 83 12.6 83 84 83 <0.01 83 13.09

N5 50 100 106 52.3 106 228 105 0.01 103 33.01

N6 60 100 103 261 103 310 103 0.01 102 50.12

N7 70 100 106 671 106 554 107 0.01 104 57.04

N8 80 80 85 1142 85 810 84 0.01 82 31.36

N9 100 150 155 4431 155 1715 152 0.01 152 185.94

N10 200 150 154 2×104 154 6066 152 0.02 151 1154.18

N11 300 150 155 8×104 155 3×104 152 0.03 151 3763.17

N12 500 300 313 4×105 312 6×104 306 0.06 304 5864.27

Average Gap(%) - - 3.72 - 3.85 - 4.35 - 3.46 -

916 ACTA AUTOMATICA SINICA Vol. 33

References

1 Lodi A, Martello S, Monaci M. Two-dimensional packing
problems: a survey. European Journal of Operational Re-
search, 2002, 141(2): 241∼252

2 Dowsland K A, Dowsland W B. Packing problems. European
Journal of Operational Research, 1992, 56(1): 2∼14

3 Pisinger D. Heuristics for the container loading problem.
European Journal of Operational Research, 2002, 141(2):
382∼392

4 Hochbaum D S, Wolfgang M. Approximation schemes for
covering and packing problems in image processing and
VLSI. Journal of the Association for Computing Machinery,
1985, 32(1): 130∼136

5 Leung J Y, Tam T W, Wong C S, Young G H, Chin F Y
L. Packing squares into a square. Journal of Parallel and
Distributed Computing, 1990, 10(3): 271∼275

6 Beasley J E. An exact two-dimensional non-guillotine cutting
tree search procedure. Operations Research, 1985, 33(1):
49∼64

7 Hadjiconstantinou E, Christofides N. An exact algorithm for
the orthogonal 2D cutting problems using guillotine cuts.
European Journal of Operational Research, 1995, 83(1):
21∼38

8 Gilmore P C, Gomory R E. A linear programming approach
to the cutting stock problem (part I). Operational Research,
1961, 9: 849∼859

9 Christofides N, Whitlock C. An algorithm for two-
dimensional cutting problems. Operational Research, 1977,
25(1): 30∼44

10 Cung V D, Hifi M, Cun B C. Constrained two-dimensional
cutting stock problems a best-first branch-and-bound algo-
rithm. International Transactions in Operational Research,
2000, 7(3): 185∼210

11 Zhang De-Fu, Li Xin. A personified annealing algorithm
for circles packing problem. Acta Automatica Sinica, 2005,
31(4): 590∼595 (in Chinese)

12 Chazelle B. The bottom-left bin packing heuristic: an ef-
ficient implementation. IEEE Transactions on Computers,
1983, 32(8): 697∼707

13 Berkey J, Wang P. Two-dimensional finite bin packing algo-
rithms. Journal of the Operational Research Society, 1987,
38: 423∼429

14 Kroger B. Guillotineable bin packing: a genetic approach.
European Journal of Operational Research, 1995, 84(3):
645∼661

15 Jakobs S. On genetic algorithms for the packing of polygons.
European Journal of Operational Research, 1996, 88(1):
165∼181

16 Liu D, Teng H. An improved BL-algorithm for genetic al-
gorithm of the orthogonal packing of rectangles. European
Journal of Operational Research, 1999, 112(2): 413∼419

17 Dagli C, Poshyanonda P. New approaches to nesting rectan-
gular patterns. Journal of Intelligent Manufacturing, 1997,
8(3): 177∼190

18 Hopper E, Turton B. A genetic algorithm for a 2D indus-
trial packing problem. Computers and Industrial Engineer-
ing, 1999, 37(1): 375∼378

19 Hopper E, Turton B. An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem.
European Journal of Operational Research, 2001, 128(1):
34∼57

20 Wu Y L, Huang W Q, Lau S C, Wong C K, Young G H. An
effective quasi-human based heuristic for solving the rectan-
gle packing problem. European Journal of Operational Re-
search, 2002, 141(2): 341∼358

21 Hifi M, Hallah R. A best-local position procedure-based
heuristic for the two-dimensional layout problem. Studia In-
formatica Universalis, International Journal on Informatics–
Special Issue on Cutting, Packing and Knapsacking Prob-
lems, 2002, 2(1): 33∼56

22 Hifi M, Hallah R. A hybrid algorithm for the two-dimensional
layout problem: the cases of regular and irregular shapes.
International Transactions in Operational Research, 2003,
10(3): 195∼216

23 Burke E, Kendall G, Whitwell G. A new placement heuristic
for the orthogonal stock-cutting problem. Operations Re-
search, 2004, 52(4): 655∼671

24 Zhang D F, Kang Y, Deng S. A new heuristic recursive algo-
rithm for the strip rectangular packing problem. Computers
& Operations Research, 2006, 33(8): 2209∼2217

25 Zhang D F, Deng A S, Kang Y. A hybrid heuristic algo-
rithm for the rectangular packing problem. Lecture Notes in
Computer Science, 2005, 3514: 783∼791

26 Zhang D F, Liu Y J, Chen S D, Xie X G. A meta-heuristic
algorithm for the strip rectangular packing problem. Lecture
Notes in Computer Science, 2005, 3612: 1235∼1241

27 Davis L. Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold, 1991

ZHANG De-Fu Associate professor at
School of Information Science and Technol-
ogy, Xiamen University. He received his
bachelor and master degrees in computa-
tional mathematics from Xiangtan Univer-
sity in 1996 and 1999, respectively, and his
Ph.D. degree in computer software and its
theory from Huazhong University of Sci-
ence and Technology in 2002. His research
interest covers computational intelligence

and financial data mining. Corresponding author of this paper.
E-mail: dfzhangl@xmu.edu.cn

CHEN Sheng-Da Master student at
Xiamen University. He received his bach-
elor degree from Jimei University in 2004.
His research interest is computational in-
telligence. E-mail: cshengda@126.com

LIU Yan-Juan Master student in Xia-
men University. She received her bache-
lor degree from Shijiazhuang University of
Economics in 2004. Her research interest is
computational intelligence.
E-mail: jjj514@sohu.com

