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Abstract Systems that are subject to both time-delay in state and input saturation are considered.
We synthesize the anti-windup gain to enlarge the estimation of domain of attraction while guaran-
teeing the stability of the closed-loop system. An ellipsoid and a polyhedral set are used to bound
the state of the system, which make a new sector condition valid. Other than an iterative algorithm,
a direct designing algorithm is derived to compute the anti-windup compensator gain, which reduces
the conservatism greatly. We analyze the delay-independent and delay-dependent cases, respectively.
Finally, an optimization algorithm in the form of LMIs is constructed to compute the compensator
gain which maximizes the estimation of domain of attraction. Numerical examples are presented to
demonstrate the effectiveness of our approach.
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1 Introduction

Time-delay exists naturally in a large series of systems. More often than not, the presence of
time-delays in the control loops usually degrades the performance of the system and complicates the
analysis and design of the control systems. A lot of attentions has been paid in this area[1,2]. One of
the main topics about the time-delay systems is to reduce the conservatism in the stability analysis.
Recently, Moon et al. have constructed a new inequality[3], which has more free matrices and is widely
used. To reduce the conservatism, model transformation technique is also widely used. A new model
transformation has been used[4] , which leads to a comparable better result. In this paper, the above
method will be extended.

The existence of input saturation may degrade the performance of the system, and even lead
to loss of stability. To reduce the influence of input saturation, two main approaches are commonly
adopted. One approach is to take control constraints into account at the beginning of the controller
design[5,6]. Another approach is to first ignore the actuator saturation, and design a linear controller
that satisfies the performance requirement, and then design an anti-windup compensator to weaken the
influence of input saturation[7,8]. Kothare et al. have exploited a common framework for the study of
anti-windup design[9,10].

We might observe actuator saturation and time-delays in the same system. During the past,
few reports concerning this problem have been reported. The problem was reduced to an optimal
design problem based on the Lyapunov-Krasovskii function method[11]. Then an iterative approach
was proposed to obtain the compensation gain for systems subject to time-delay[12], which involved
complex computation, similar to the approach proposed by Cao, et al.

[13]. Later, a new descriptor
method[4] was proposed to improve the regional stabilization results for time-delay systems with satu-
rating actuators[11,13] . But this method imposes limitation on the derivative of the initial conditions.

In this paper, we will extend the idea of [13], and use compensator gain Ec as a free parameter to
maximize the estimation of domain of attraction. By means of Lyapunov-Krasovskii method, a direct
designing algorithm will be proposed to compute the anti-windup compensator gain, which can greatly
reduce the computation burden compared with the earlier method[12,13] while enlarging the estimation
of domain of attraction. Note that in [13] an iterative algorithm was introduced, which involved
much computation. A new equality with several slack variables and a new sector condition[14] will be
incorporated in the algorithm, and remarkably reduce the conservatism. Furthermore, an optimization
algorithm in the form of LMIs was presented to estimate the domain of attraction.
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2 Problem statement and preliminaries

In this paper, we will revisit the system that is subject to both time-delays in state and input
saturation. Consider the following original linear time-delay system

ẋ = Ax(t) + Aτx(t − τ ) + Bu(t) (1)

y(t) = Cx(t) (2)

with the initial conditions
x(t) = φ(t), ∀t ∈ [−τ ] (3)

where x ∈ R
n is the state, u ∈ R

m the control input, y ∈ R
p the measured output vectors. A, Aτ , B are

real constant matrices of appropriate dimensions. The initial condition φ is a continuous vector-valued
function, i.e., φ ∈ Cn,τ . Cn,π = C([−τ, 0], R

n) denotes the Banach space of continuous vector functions
mapping the interval [−τ, 0] into R

n with the topology of uniform convergence.
To meet the performance specifications, a linear controller is defined as follows

η̇(t) = Acη(t) + Bcy(t), ν(t) = Ccη(t) + Dcy(t)

where η ∈ R
nc is the controller state, y(t) the controller input, and ν(t) the controller output. This

dynamic compensator has been designed to satisfy the stability and performance requirements of the
closed-loop system in the absence of control saturation. In the presence of actuator saturation, the
actual control signal of the system can be described as u(t) = σ(ν(t)) = σ(Ccη(t) + DcCx(t)). The
function σ : R

m → R
m is the standard saturation function defined by

σ(u) = [σ(u1) σ(u2) · · · σ(um)]T and σ(ui) = sign(ui) min{u0(i), |ui|}

A typical anti-windup compensator involves adding a correction term of the form Ec(σ(ν(t))).
The modified compensator has the form

η̇ = Acη(t) + Bcy(t) + Ec(σ(ν(t)) − ν(t)), ν(t) = Ccη(t) + Dcy(t)

In the stability analysis of system subject to input saturation, Popov and circle criteria were
frequently used, although they are much conservative. Many attempts were paid to reduce the conser-
vatism. Hu et al, has introduced a vertex criteria[15] which greatly reduced the conservatism. However,
the vertex criteria can not be used to compute Ec directly. Here, a new sector condition[16] will be used
and then an direct algorithm will be derived.
2.1 Closed-loop system structure

It is easy to see that ψ(ν) = ν − σ(ν) is a dead zone. If we use this dead zone representation
under the compensated dynamic linear controller, the closed-loop system can be written as

ξ̇(t) = Āξ(t) + Āτξ(t − τ ) − (B̄ + R̄Ec)ψ(Fξ(t)) (4)

where

ξ(t)=

�
x(t)
η(t)

�
, Ā=

�
A + BDcC BCc

BcC Ac

�
, Āτ =

�
Aτ 0
0 0

�
, B̄=[ B 0 ] , F =[DcC Cc], R̄=[0 Inc

]T

It is easy to see in (4) that Ec is the only free and unknown parameter that can be used to enlarge
the estimation of domain of attraction. In what follows, a new sector condition will be presented.
2.2 Preliminaries

Consider a matrix G ∈ R
m×(n+nc) and define the following polyhedral set

S = {ξ ∈ R
n+n;−u0(i) 6 (Fi − Gi)ξ 6 u0(i)}, i = 1, · · · , m (5)

Lemma 1[14]. Consider the function ψ(ν) defined above. If ξ ∈ S , then the relation

ψ
T(Fξ)T [ψ(Fξ) − Gξ] 6 0 (6)

holds for any diagonal matrix 0 < T ∈ R
m×m.
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2.3 Problem statement

Assume that system (4) admits an augmented initial condition

φξ(θ) =

�
x(t0 + θ) = φx(θ)
η(t0 + θ) = φη(θ)

�
, ∀θ ∈ [−τ, 0]

Denote the state trajectory of (4) with the initial conditions ξ(t0 + θ) = φξ(θ) by ξ(t,φξ). The domain
of attraction corresponding to all initial conditions φξ of the closed-loop system (4) is then defined as
the set D = {φξ ∈ Cn,τ [−τ, 0] : limt→∞ ξ(t,φξ) = 0}.

The trivial solution ξ(t,φξ) of system (4) is said to be asymptotically stable if for any initial
condition satisfying |φξ| 6 v with any finite v > 0, the trajectories of system (4) converge asymptotically

to the origin[13] . Here, |•| denotes the vector norm. The determination of the exact domain of attraction
is usually impossible and we also cannot find an invariant set to estimate the domain of attraction.
However, note that if we can determine a set Xδ defined by

Xδ = {φξ ∈ Cn,τ [−τ, 0] : |φξ|
2

6 v} (7)

such that Xδ is contained in the domain of attraction, then Xδ can be seen as an estimate of the domain
of attraction[13]. The design objective of this paper is to design a compensator gain Ec to enlarge the
estimation of the domain of attraction.

3 Anti-windup design for delay-independent case

We will give the approach to the design of the anti-windup compensator gain such that the closed-
loop system is asymptotically stable at the origin with a domain of attraction as large as possible. The
candidate Lyapunov-Krasovskii functional is defined as

V (ξ(t)) = ξ
TP1ξ(t) +

Z t

t−τ

ξ
T(s)Qξ(s)ds (8)

and P1 > 0, Q > 0 are constant matrices to be determined. The second term of (8) corresponds to the
delay-independent stability with respect to the discrete delays the in system state. Now we choose an
ellipsoid to estimate the sector condition, which is defined as follows

Ω(P1, ρ) = {ξ ∈ R
n+nc : ξTP1ξ 6 ρ−1} (9)

We use Ω(P1, ρ) to bound the states trajectories of system (4) for all the initial states contained in
Xδ. With the above defined Lyapunov-Krasovskii functional, in what follows, we will give the conditions
that satisfy the objective defined in Section 2.

Theorem 1. If there exist matrices X1 > 0, H > 0, a diagonal matrix S > 0, matrices X2, Z, Y
of appropriate dimensions and constants ε, ετ , such that the following LMIs hold�

Ξ1 + Λ1 Φ̄

∗ −2S

�
< 0 (10)�

X1 XT
2 FT

(i) − Y T
(i)

∗ ρu2
0(i)

�
> 0, ∀i = 1, · · · , m (11)

where

Ξ1 =

24XT
2 ĀT + ĀX2 X1 − X2 + εXT

2 ĀT ετXT
2 ĀT + ĀτX2

∗ −εXT
2 − εX2 εĀτX2 − ετXT

2

∗ ∗ ετXT
2 ĀT

τ + ετ ĀτX2

35 (12)

Λ̄1 =

24H 0 0
0 0 0
0 0 −H

35 (13)

Φ̄ = [−(−Y T + R̄Z + B̄S)T − ε(R̄Z + B̄S)T − ετ (R̄Z + B̄S)T]T (14)

then the closed-loop system under compensator gain Ec = ZS−1 is asymptotically stable at the origin
for any initial condition φξ(θ) ∈ Xδ with δ = 1/ρδT1

and δT1
= σ̄(X−T

2 X1X
−1
2 ) + τ σ̄(X−T

2 HX−1
2 ),

where G = Y X−1
2 .
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Proof. It is easy to see that inequality (1) ensures W (P1, ρ) ⊂ s. Considering the Lyapunov-
Krasovskii functional (8). First, we will introduce several slack variables by a new equality condition[17].

Define z(t) = ξ̇. System (4) can be represented equally as

Āξ(t) − z(t) + Āτξ(t − τ ) − (B̄ + R̄Ec)ψ = 0 (15)

For simplicity, in what follows, we will denote

ξτ = ξ(t − τ ), ξ̃(t) = [ξT(t) z
T(t) ξ

T
τ ]T, Ã = [Ā − I Āτ ], P = [P2 P3 Pτ ]

We then have
2(P2ξ + P3z + Pξτ )T(Āξ(t) − z(t) + Āτξτ − (B̄ + R̄Ec)ψ) = 0 (16)

for any weighting matrices P2, P3, and Pτ of compatible dimensions. These three matrices are slack
variables which can provide freedom in the stability analysis, thus reduce the conservatism.

By (16), derive V (ξ(t)) along the solution of (4). Then we obtain

V̇ (ξ) = 2ξTP1z + ξTQξ − ξT
τ Qξτ + 2(P2ξ + P3z + Pξτ )T(Āξ(t) − z(t) + Āτξτ − (B̄ + R̄Ec)ψ)

By the sector condition (6), the derivative of V (ξ(t)) can be relaxed as

V̇ (ξ(t)) 6 V̇ (ξ) + 2ψTTGξ(t) − 2ψTTψ = ζ
T
Γζ

where

ζ = [ξT
z

T
ξ

T
τ ψ

T]T, Γ =

�
Σ1 + Λ1 Φ

∗ −2T

�
and

Σ1 =

24PT
2 Ā + ĀTP2 P1 − PT

2 + ĀTP3 ĀTPτ + PT
2 Āτ

∗ −PT
3 − P3 PT

3 Āτ − Pτ

∗ ∗ PT
τ Āτ + ĀT

τ Pτ

35
Λ1 =

24Q 0 0
0 0 0
0 0 −Q

35 , Φ =

24 (TG)T − PT
2 (B̄ + R̄Ec)

−PT
3 (B̄ + R̄Ec)

−PT
τ (B̄ + R̄Ec)

35
Obviously inequality

Γ < 0 (17)

ensures V̇ (ξ(t)) < 0. Let X2 = P−1
2 , X1 = XT

2 P1X2, P3 = εP2, Pτ = ετP2, S = T−1, H = XT
2 QX2,

Z = EcS, Y = GX2, and ∆ = diag{X2, X2, X2, S}. Multiply (17) by ∆T and ∆ on the left and right
sides, respectively and we get inequality (10).

From V̇ (ξ(t)) < 0, it follows that V (ξ(t)) < V (ξ(0)). And Let σ̄(G) denote the largest singular
value of G, therefore, we obtain

ξ
TP1ξ(t) 6 V (ξ(t)) < V (ξ(0)) 6 |φξ|

2δT1
6 ρ−1

Hence, with any initial condition φξ(θ) ∈ Xδ, the trajectories ξ(t,φξ) of the closed-loop system remain
within Ω(P1, ρ) provided that (10) is satisfied. �

Remark 1. In the proof of Theorem 1, a model transformation is actually introduced when we set
z(t) = ξ̇(t). This transformation is less conservative than other model transformation[18]. Comparing
Theorem 1 with Theorem 1 of [16], there are two free variables ε, ετ in Theorem 1, which could provide
more freedom for search of the optimal solution. Actually, in the proof of Theorem 1, three slack
variables P2, P3, and Pτ are introduced.

4 Anti-windup design for delay-dependent case

In this section, we will do delay-dependent stability analysis for system (4) and present a com-
pensation method to enlarge the estimation of domain of attraction by designing the anti-windup
compensation gain Ec.
4.1 Delay-dependent result

Denote z(t) = ξ̇(t) and we choose the following Lyapunov-Krasovskii functional

V (ξ(t)) = ξ
TP1ξ(t) + V2 + V3 (18)
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where

V2 =

Z t

t−τ

ξ
T(s)Q1ξ(s)ds, V3 =

Z 0

−τ

Z t

t+θ

z
T(s)Q2z(s)dsdθ

With the above defined system transformation and Lyapunov-Krasovskii functional, the following the-
orem can be obtained.

Theorem 2. If there exist matrices X1 > 0, H1 > 0, H2 > 0, M̃ > 0, a diagonal matrix S > 0,
matrices Ñ , X2, Z, Y of appropriate dimensions and constants ε, ετ , τ0 such that the following LMIs
hold �

Ξ1 + Ξ + Λ̄2 Φ̄

∗ −2S

�
< 0 (19)�

X1 XT
2 FT

(i) − Y T
(i)

∗ ρu2
0(i)

�
>, ∀i = 1, · · · , m (20)�

M̃ ÑT

∗ H2

�
> 0 (21)

where Λ2 =

24H1 0 0
0 τ0H2 0
0 0 −H1

35, Ξ = τ0M̃ + ÑΠ + Π
T
Ñ with, Π = [I 0 − I ], Ξ , Φ̄1, Φ̄2, S and

G defined in Theorem 1, then the closed-loop system (4) is asymptotically stable at the origin for any
τ 6 τ0 under compensator gain Ec = ZS−1 for any initial condition φξ(θ) ∈ Xδ with δ = 1/ρδT2

and

δT2
= σ̄(P1) + τ0σ̄(Q1) +

9τ 2
0

2
[σ̄(ĀTQ2Ā) + σ̄(ĀT

τ Q2Āτ ) + σ̄((B̄ + R̄Ec)
TQ2(B̄ + R̄Ec))|G|2] (22)

where P1 = X−T
2 X1X

−1
2 , Q1 = X−T

2 H1X
−1
2 , Q2 = X−T

2 H2X
−1
2 , and G = Y X−1

2 .
Proof. The derivative of V (ξ(t)) along the trajectory of system (4) can be computed as follows

V̇2 = ξ
T(t)Q1ξ(t) − ξ

T(t − τ )Q1ξ(t − τ ), V̇3 = τzT(t)Q2z(t) −

Z t

t−τ

z
T(s)Q2z(s)ds

Using the Leibniz-Newton formula, we obtain ξ(t − τ ) = ξ(t) −
R t

t−τ
ξ̇(s)ds = ξ(t) −

R t

t−τ
z(s)ds.

Then equality (16) can be rewritten as

2ξ̃
T
(t)PT((Ā + Āτ )ξ(t) − z(t) − Āτ

Z t

t−τ

z(s)ds − (B̄ + R̄Ec)ψ) = 0 (23)

By equality (23), we obtain

V̇ (ξ) =2ξTP1ξ̇ + V̇2 + V̇3 = 2ξTP1z + 2ξ̃
T
(t)PTÃξ̃ + 2ξ̃

T
(t)PTĀτ (ξ − ξ)−

2ξ̃
T
(t)PTĀτ

Z t

t−τ

z(s)ds + 2ξ̃
T
(−B̄ − R̄Ec)ψ + V̇2 + V̇3

Assuming that M > 0 and N are matrices of appropriate dimensions, and satisfy

�
M NT

∗ H2

�
> 0.

Thus, under the relax condition[3], we obtain

−2ξ̃
T
(t)PTĀτ

Z t

t−τ

z(s)ds 6 τ ξ̃
T
M ξ̃ + 2ξ̃

T
(NT − PTĀτ )

Z t

t−τ

z(s)ds +

Z t

t−τ

z
T(s)Q2z(s)ds =

τ ξ̃
T
M ξ̃ + 2ξ̃

T
(NT − PTĀτ )(ξ − ξτ ) +

Z t

t−τ

z
T(s)Q2z(s)ds

Together with the application of sector condition (6), the derivative of V (ξ(t)) can be relaxed as

V̇ (ξ) 6ξ̃
T
(PTÃ + ÃTP + τM + NT

Π + Π
TN)ξ̃ + 2ξTP1z+

τzTQ2z + ξTQ1ξ − ξ
T
τ Q1ξτ + 2ψTTGξ − 2ψTTψ



6 ACTA AUTOMATICA SINICA Vol. 32

Similar to the proof of Theorem 1, we obtain inequalities (19), (20) and (21). By equality (15), we
obtain

z
TQ2z = ξ

TĀTQ2Āξ + ξT
τ ĀT

τ Q2Āτξτ + ψT(B̄ + R̄Ec)
TQ2(B̄ + R̄Ec)ψ + ν1 + ν2 + ν3

where

ν1 = 2ξTĀTQ2Āτξ 6 ξ
TĀTQ2Āξ + ξT

τ ĀT
τ Q2Āτξτ

ν2 = 2ξTĀTQ2(B̄ + R̄Ec)ψ 6 ξ
TĀTQ2Āξ + ψT(B̄ + R̄Ec)

TQ2(B̄ + R̄Ec)ψ

ν3 = 2ξT
τ ĀT

τ Q2(B̄ + R̄Ec)ψ 6 ξ
T
τ ĀT

τ Q2Āτξτ + ψT(B̄ + R̄Ec)
TQ2(B̄ + R̄Ec)ψ

It follows that

z
TQ2z 6 3(ξTĀTQ2Āξ + ξT

τ ĀT
τ Q2Āτξτ + ψT(B̄ + R̄Ec)

TQ2(B̄ + R̄Ec)ψ) (24)

By the same method used in the proof of Theorem 1, we get that inequality (19) implies V̇ (ξ) < 0.
It follows that V (ξ(t)) < V (ξ(0)). Then, together with |ψ(Fξ)| 6 |G| · |ξ| and inequality (24), we get

ξ
TP1ξ(t) 6 V (ξ(t)) < V (ξ(0)) 6 |φξ|

2δT2
6 ρ−1

Therefore, with any initial condition φξ(θ) ∈ Xδ, the trajectories ξ(t,φξ) of the closed-loop system
remain within Ω(P1, ρ), provided that (10) is satisfied. �

Remark 2. In the case of delay-dependent analysis, a model transformation is adopted, which
was also adopted by E. Fridman[4] but restriction on the derivative of initial conditions was imposed.
Our approach has removed this restriction and the theorems hold for all the initial conditions in the
admissible set Xδ.
4.2 Optimization algorithm

As stated in Section 2, our objective is to make the estimation of domain of attraction as large as
possible. Theorem 2 gives a sufficient condition allowing to compute the compensation gain Ec such
that the closed-loop system is regionally stabilized in the ball Xδ of all initial conditions. Obviously,
if the delay τ is known, a natural idea is to optimize Ec such that the ball Xδ is as large as possible.
It is easy to see that this problem can be solved by minimizing ρδT . However, due to the complex
representation of ρδT in Theorem 1 and Theorem 2, we can not reduce the optimization problem of
min{ρδT } to an optimization problem in the form of LMIs directly.

In what follows, we will present an algorithm to solve this problem. Take Theorem 2 for example.
To solve the problem, we use the following optimization function

min {θ0ρ + θ1trace(VX1
) + θ2trace(VH1

) + θ3trace(VH2
)}

s.t. a) X−T
2 X1X

−1
2 6 VX1

, X−T
2 H1X

−1
2 6 VH1

, X−T
2 H2X

−1
2 6 VH2

(25)

b) inequality (19), (20), (21)

where θ0, θ1, θ2, θ3 > 0 are weighting parameters.
It is easy to see that the optimization objective function in the optimization problem (25) is not

equivalent to min{ρδT2
}. Here, we try to use the optimization problem (25) to obtain a ball Xδ as large

as possible, although we may not obtain the optimal solution, i.e., the largest ball. Similarly, we can
use the above optimizing method to solve the computation problems for the delay-independent case.

Note that (X − Y )TY −1(X − Y ) > 0 always holds for any matrixes X and Y of compatible
dimensions, and we have XTY −1X > XT + X − Y . By the Schur complement, the optimization
problem (25) can be changed to the following LMI optimization problem

min {θ0ρ + θ1trace(VX1
) + θ2trace(VH1

) + θ3trace(VH2
)}

s.t. a)

�
VX1

I
I XT

2 + X2 − X1

�
> 0,

�
VH1

I
I XT

2 + X2 − H1

�
> 0�

VH2
I

I XT
2 + X2 − H2

�
> 0 (26)

b) inequality (19), (20), (21)
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where ε, ετ , and τ are pre-given, and θ0, θ1, θ2, θ3 > 0 are weighting parameters.
It is easy to solve the LMI optimization problem (26) by the LMI tools in Matlab. After solving

the optimization problem, we can compute the estimation of domain of attraction Xδ with δ = 1/ρδT2
.

This method can be easily extended to the delay-independent case.

5 Numerical examples

Example 1. Firstly we consider an example to illustrate the analysis of delay-independent case.
This system is given as follows

A =

�
1 1.5

0.3 −2

�
, Aτ =

�
0 −1
0 0

�
, B =

�
10
1

�
, C = [5 1], D = 0, u0 = 15

The dynamic controller is given as

Ac =

�
−20.2042 2.5216
2.1415 −4.4821

�
, Bc =

�
1.9516
−0.0649

�
, Cc = [−0.9165 0.1091], Dc = 0

The above example is borrowed from [16]. By Theorem 1 with ε = 0.02, ετ = 0, a feasible solution

can be obtained with Ec =

�
−21.5148
−4.7793

�
. If we set τ = 0.5, then using the algorithm presented in

Section 4, δ is computed as 4.8468e + 003 with the above Ec, while δ is 4.7852e + 003 when Ec = 0.
This implies that the compensator gain has enlarged the estimate of domain of attraction. δ is computed
as 4.520e + 003 with τ = 0.5 and Ec 6= 0 in [16]. Obviously, our result is better than that in [16]. The
detailed comparison is listed in Table 1, where δEc 6=0 denotes δ with Ec as a free parameter, and δEc=0

denotes δ obtained with Ec set as zero. Note that the above results were obtained with all the same
weighting parameters.

Table 1 δ for different τ

τ δEc 6=0 δEc=0 δEc 6=0 of [16]

0.5 4.8468e + 003 4.7852e + 003 4.5200e + 003

1 3.7224e + 003 3.6817e + 003 2.9860e + 003

2 2.5427e + 003 2.5196e + 003 1.7727e + 003

Example 2. Now we consider an example to illustrate the analysis of delay-dependent case. This
example was also used in [16], which is defined as follows

A =

�
1 0
0 0

�
, Aτ =

�
1 1.5

0.3 −2

�
, B = [ 10 0 ] , C = [5 1], D = 0, u0 = 15

The dynamic controller is also the same as given in Example 1. By Theorem 2 and the algorithm
presented in Section 4 with ε = 0.15, ετ = 0.02, the stability of the system can be guaranteed for all
the constant time-delay. We list the detailed information of comparison with method in [16] about the
δ, Ec in Table 2. Clearly, our result is less conservative than that of [16]. Obviously, for a larger, one
obtains a smaller estimation of the region of attraction. These result are obtained with all the same
weighting factors in (26).

Table 2 δ and Ec for different values of τ

τ δEc
δ δ of [16]

0.1

�
9.0502
−8.6980

�
8.5167e + 003 7.6820e + 003

0.2

�
8.7230
−9.6404

�
7.2125e + 003 5.5520e + 003

0.4

�
7.2257
−8.0450

�
4.6355e + 003 756.19

6 Conclusion

In this paper, we considered linear systems subject to both time-delays in state and saturation in
input signal. A new Lyapunov function approach was presented, and a direct algorithm was introduced
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to design the anti-windup compensator gain, which can enlarge the domain of attraction of the closed-
loop systems. Moreover, with a relax technique, we constructed an algorithm to optimize, such that
the estimation of domain of attraction is as large as possible. It is important to note that our method
is different from that used in [12,16]. More free parameters were used to reduce the conservatism in
this paper. Moreover, the optimization algorithm that is used to compute the maximal estimation of
region of attraction is original, which involved less computation than the method used by [12,16]
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