2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于周期事件驱动的切换系统H跟踪控制

董潇潇 乔欢

董潇潇, 乔欢. 基于周期事件驱动的切换系统H∞跟踪控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c220754
引用本文: 董潇潇, 乔欢. 基于周期事件驱动的切换系统H跟踪控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c220754
Dong Xiao-Xiao, Qiao Huan. Periodic event-triggered H∞ tracking control for switched nonlinear systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c220754
Citation: Dong Xiao-Xiao, Qiao Huan. Periodic event-triggered H tracking control for switched nonlinear systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c220754

基于周期事件驱动的切换系统H跟踪控制

doi: 10.16383/j.aas.c220754
基金项目: 国家自然科学基金(61503254, 61673099)资助
详细信息
    作者简介:

    董潇潇:沈阳工业大学理学院副教授. 主要研究方向为切换系统, 非线性控制系统. 本文通信作者. E-mail: dongxiaoxiao0331@sina.com

    乔欢:沈阳工业大学理学院硕士研究生. 主要研究方向为切换系统控制. E-mail: qiaohuan0428@163.com

Periodic Event-triggered H Tracking Control for Switched Nonlinear Systems

Funds: Supported by National Natural Science Foundation of China (61503254, 61673099)
More Information
    Author Bio:

    DONG Xiao-Xiao Associate professor at the School of Science, Shenyang University of Technology. Her research interest covers switched systems, nonlinear systems control. Corresponding author of this paper

    QIAO Huan Master student at the School of Science, Shenyang University of Technology. Her main research interest is switched system control

  • 摘要: 针对级联非线性切换系统, 提出了基于周期事件驱动机制的H输出跟踪控制策略. 首先, 基于提出的周期事件驱动方案, 设计了积分型控制器, 并将闭环系统转化为时滞切换系统. 其次, 考虑子系统与控制器异步切换的情况, 并给出驻留时间与平均驻留时间满足的关系, 从而得到H输出跟踪控制问题可解的充分条件. 最后, 给出数值仿真验证主要方法的有效性.
  • 图  1  闭环系统的状态响应

    Fig.  1  State responses of the closed-loop system

    图  2  切换系统的输出和参考信号

    Fig.  2  Output of the switched system and the reference signal

    图  3  事件驱动时刻和保持间隔

    Fig.  3  The triggered instants and holding intervals

    图  4  系统和控制器切换信号

    Fig.  4  Switching signal of the system and the controller

  • [1] Sun Z, Ge S S. Analysis and synthesis of switched linear control systems. Automatica, 2005, 41(2): 181—195 doi: 10.1016/j.automatica.2004.09.015
    [2] Horowitz R, Varaiya P. Control design of an automated highway system. IEEE Proceedings of the IEEE, 2000, 88(7):913—925 doi: 10.1109/5.871301
    [3] Cen H, Singh B K. Nonholonomic wheeled mobile robot trajectory tracking control based on improved sliding mode variable structure. Wireless Communications and Mobile Computing, 2021, 2021: 1—9
    [4] Li T F, Lu J, Zhu J. Periodic sampled-data-based dynamic model control of switched linear systems. Journal of the Franklin Institute, 2022, 359(16): 8539—8552 doi: 10.1016/j.jfranklin.2022.09.001
    [5] Tallapragada P, Chopra N. On event triggered trajectory tracking for control affine nonlinear systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, USA: IEEE, 2011. 5377—5382
    [6] Xiao X, Park J H, Zhou L, Lu G. Event-triggered control of discrete-time switched linear systems with network transmission delays. Automatica, 2020, 111: Article No. 108585 doi: 10.1016/j.automatica.2019.108585
    [7] Zhang S C, Zhao B, Liu D R, Zhang Y W. Observer-based event-triggered control for zero-sum games of input constrained multi-player nonlinear systems. Neural Networks, 2021, 144: 101—112 doi: 10.1016/j.neunet.2021.08.012
    [8] Lehmann D, Johansson K H. Event-triggered PI control subject to actuator saturation. IFAC Proceedings Volumes, 2012, 45(3): 430—435 doi: 10.3182/20120328-3-IT-3014.00073
    [9] Heemels W P M H, Donkers M C F, Teel A R. Periodic event-triggered control for linear systems. IEEE Transactions on Automatic Control, 2012, 58(4): 847—861
    [10] Heemels W, Donkers M C F. Model-based periodic event-triggered control for linear systems. Automatica, 2013, 49(3): 698—711 doi: 10.1016/j.automatica.2012.11.025
    [11] Xiang W, Johnson T T. Event-triggered control for continuous-time switched linear systems. IET Control Theory and Applications, 2017, 11(11): 1694—1703 doi: 10.1049/iet-cta.2016.0672
    [12] Mao J, Xiang Z, Zhai G. Sampled-data control of a class of switched nonlinear systems under asynchronous switching. Journal of the Franklin Institute, 2019, 356(4): 1924—1943 doi: 10.1016/j.jfranklin.2019.01.013
    [13] Qi Y, Zhao X, Zhao X. Event-triggered control for networked switched systems subject to data asynchronization. IEEE Systems Journal, 2021, 15(4): 5197—5208 doi: 10.1109/JSYST.2021.3064833
    [14] Cui D, Wu Y F, Xiang Z R. Finite-time adaptive fault-tolerant tracking control for nonlinear switched systems with dynamic uncertainties. International Journal of Robust and Nonlinear Control, 2021, 31(8): 2976—2992 doi: 10.1002/rnc.5429
    [15] Xu N, Zhao X D, Zong G D, Wang Y Q. Adaptive control design for uncertain switched nonstrict-feedback nonlinear systems to achieve asymptotic tracking performance. Applied Mathematics and Computation, 2021, 408: Article No. 126344 doi: 10.1016/j.amc.2021.126344
    [16] Li Q K, Zhao J, Dimirovski G M. Tracking control for switched time-varying delays systems with stabilizable and unstabilizable subsystems. Nonlinear Analysis: Hybrid Systems, 2009, 3(2): 133—142 doi: 10.1016/j.nahs.2008.11.004
    [17] Tallapragada P, Chopra N. On event triggered tracking for nonlinear systems. IEEE Transactions on Automatic Control, 2013, 58(9): 2343—2348 doi: 10.1109/TAC.2013.2251794
    [18] Huang J, Pan X, Hao X. Event-triggered and self-triggered H output tracking control for discrete-time linear parameter-varying systems with network-induced delays. International Journal of Systems Science, 2020, 51(15): 3098—3117 doi: 10.1080/00207721.2020.1808731
    [19] Xu X, Li Y, Zhang H. Quantized stabilization for switched affine systems with event-triggered mechanism. International Journal of Robust and Nonlinear Control, 2021, 31(9): 4052—4063 doi: 10.1002/rnc.5462
    [20] Wang Y Q, Niu B, Wang H Q, Alotaibi N, Alkhateeb A. Neural network-based adaptive tracking control for switched nonlinear systems with prescribed performance: An average dwell time switching approach. Neurocomputing, 2021, 435: 295—306 doi: 10.1016/j.neucom.2020.10.023
    [21] Xiang W, Tran H D, Johnson T T. Robust exponential stability and disturbance attenuation for discrete-time switched systems under arbitrary switching. IEEE Transactions on Automatic Control, 2017, 63(5):1450—1456
    [22] Gu K. An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE Conference on Decision Control. Sydney, Australia: IEEE, 2000. 2805—2810
  • 加载中
计量
  • 文章访问数:  305
  • HTML全文浏览量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 录用日期:  2023-03-05
  • 网络出版日期:  2023-04-26

目录

    /

    返回文章
    返回