2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤表面等离子体共振葡萄糖浓度传感器研究

郑万禄 马遥 张亚男

郑万禄, 马遥, 张亚男. 光纤表面等离子体共振葡萄糖浓度传感器研究. 自动化学报, 2020, 46(x): 1−5 doi: 10.16383/j.aas.c200264
引用本文: 郑万禄, 马遥, 张亚男. 光纤表面等离子体共振葡萄糖浓度传感器研究. 自动化学报, 2020, 46(x): 1−5 doi: 10.16383/j.aas.c200264
Zheng Wan-Lu, Ma Yao, Zhang Ya-Nan. Research on glucose concentration sensor based on optical fiber surface plasmon resonance technology. Acta Automatica Sinica, 2020, 46(x): 1−5 doi: 10.16383/j.aas.c200264
Citation: Zheng Wan-Lu, Ma Yao, Zhang Ya-Nan. Research on glucose concentration sensor based on optical fiber surface plasmon resonance technology. Acta Automatica Sinica, 2020, 46(x): 1−5 doi: 10.16383/j.aas.c200264

光纤表面等离子体共振葡萄糖浓度传感器研究

doi: 10.16383/j.aas.c200264
基金项目: 国家自然科学基金(61703080, 6177310)资助项目
详细信息
    作者简介:

    郑万禄:东北大学信息科学与工程学院硕士研究生. 2016年获得河南城建学院电气与控制工程学院学士学位. 主要研究方向光纤表面等离子共振传感技术及其生物医学方面的应用.Email: 15612916827@163.com

    马遥:东北大学信息科学与工程学院硕士研究生. 2019年获得东北大学秦皇岛分校控制工程学院学士学位. 主要研究方向为海洋重金属检测, 光纤SPR传感技术. E-mail: my1834654775@163.com

    张亚男:东北大学教授. 2015年获得东北大学信息科学与工程学院博士学位. 主要研究方向为光纤传感技术, 敏感材料. E-mail: zhangyanan@ise.neu.edu.cn

Research on Glucose Concentration Sensor Based on Optical Fiber Surface Plasmon Resonance Technology

Funds: Supported by National Natural Science Foundation of China (61703080, 6177310)
  • 摘要: 本文提出一种基于表面等离子体共振(surface plasmon resonance, SPR)的光纤传感器实现了葡萄糖浓度的测量. 该传感器探头采用反射式结构, 金膜镀在光纤表面激发SPR, 然后采用共价结合的方式将葡萄糖氧化酶(Glucose Oxidase, GOD)固定在金膜表面. 随着葡萄糖浓度的增加, 由于GOD和葡萄糖的结合使得探头表面折射率增加, 最终引起传感器谐振波长发生红移. 通过监测谐振波长的偏移量, 即可实现葡萄糖浓度的测量. 实验结果表明: 该传感器对折射率变化的灵敏度可达到2108.6 nm/RIU; 在0-0.5 mg/mL的葡萄糖浓度范围内, 谐振波长随葡萄糖浓度的增加而线性移动, 灵敏度为85.4 nm/(mg/mL); 随着葡萄糖浓度继续增加, GOD的结合位点逐渐减少, 导致光谱偏移量逐渐降低并趋于饱和, 在0.5-1.2 mg/mL的葡萄糖浓度范围内呈现非线性关系.
  • 图  1  葡萄糖浓度检测系统结构图

    Fig.  1  Schematic of glucose concentration sensing system

    图  2  葡萄糖氧化酶GOD固定

    Fig.  2  Schematic diagram of GOD immobilization

    图  3  反射式光纤SPR传感器折射率测量图谱

    Fig.  3  Experimental spectra for refractive index measurement

    图  4  灵敏度拟合曲线

    Fig.  4  Sensitivity curve for refractive index

    图  5  0-1.2 mg/mL葡萄糖浓度测量输出图谱

    Fig.  5  Experimental spectra for different concentration of glucose (0-1.2 mg/mL)

    图  6  葡萄糖浓度测量灵敏度拟合曲线

    Fig.  6  Sensitivity curve for glucose concentration measurement

  • [1] Yu Sha, Ding Li-Yun, Lin Hao-Tao. A novel optical fiber glucose biosensor based on carbon quantum dots-glucose oxidase/cellulose acetate complex sensitive film. Biosensors and Bioelectronics, 2019, 146: 1−7
    [2] Maxime L, Driss L. Non-enzymatic D-glucose plasmonic optical fiber grating biosensor. Biosensors and Bioelectronics, 2019, 142: 1−6
    [3] Mikel A, Timea F. Liquid-core microstructured polymer optical fiber s fiber-enhanced Raman spectroscopy probe for glucose sensing. Journal of Technology, 2019, 50: 2981−2988
    [4] Wang Yan-Ru, Tou Zhi-Qiang, Raghunan D. Reflection-Based Thin-Core Modal Interferometry Optical Fiber Functionalized With PAA-PBA/PVA for Glucose Detection Under Physiological pH. Journal of Technology, 2019, 37: 2773−2777
    [5] Huang J, Li M S, Zhang P P. Temperature controlling fiber optic glucose sensor based on hydrogel-immobilized GOD complex. Sensors and Actuators B: Chemical, 2016, 237: 24−29 doi: 10.1016/j.snb.2016.06.062
    [6] Huang J, Zhang P P, Li M S. Complex of hydrogel with magnetic immobilized GOD for temperature controlling fiber optic glucose sensor. Biochemical Engineering Journal, 2016, 114: 262−267 doi: 10.1016/j.bej.2016.07.012
    [7] 陈喜锋, 王国利, 郭雪梅. 实现目标跟踪的光纤传感网络及其优化设计. 自动化学报, 2014, 40(7): 1348−1354

    Chen Xi-Feng, Wang Guo-Li, Guo Xue-Mei. Fiber-optic sensor network for target tracking and its optimized design. Acta Automatica Sinica, 2014, 40(7): 1348−1354
    [8] Li Y P, Ma H, Gan L. Immobilized optical fiber microprobe for selective and high sensitive glucose detection. Sensors and Actuators B: Chemical, 2018, 255(3): 3004−3010
    [9] Jiang B Q, Zhou K M. Label-Free glucose biosensor based on enzymatic graphene oxide-functionalized titled fiber grating. Sensors and Actuators B: Chemical, 2018, 254: 1033−1039 doi: 10.1016/j.snb.2017.07.109
    [10] Badmos A A, Sun Q, Sun Z. Enzyme-functionalized thin-cladding long-period fiber grating in transition mode at dispersion turning point for sugar-level and glucose detection. Journal of Biomedical Optics, 2017, 22(2): 027003 doi: 10.1117/1.JBO.22.2.027003
    [11] Luo B, Yan Z, Sun Z. Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration. Optics Express, 2015, 23(25): 32429−32440 doi: 10.1364/OE.23.032429
    [12] Yuan Y, Yang X, Gong D. Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs. Optics Express, 2017, 25(4): 3884−3898 doi: 10.1364/OE.25.003884
    [13] Li D C, Zhu R, Wu P. Measurement of glucose concentration by fiber-optic surface plasmon resonance sensor. SPIE BiOS, 2013, 8576: 85760X-1−85760X-8
    [14] Wu J L, Yan Y R, Li S Q. Monitoring of patient glucose infusion using a surface plasmon resonance-based fiber optic sensor. Measurement Science and Technology, 2015, 26: 1−7
    [15] 蔡露, 胡晟. 基于MTM结构的光纤应变传感器. 自动化学报, 2020, 46(5): 986−990

    Cai Lu, Hu Sheng. An optical ?ber strain sensor based on MTM ?ber structure. Acta Automatica Sinica, 2020, 46(5): 986−990
    [16] 鄂思宇, 张亚男, 赵强, 吴奇鲁. 用于折射率和温度同时测量的反射式光纤SPR传感器. 自动化学报, 2019

    E Si-Yu, Zhang Ya-Nan, Zhao Qiang, Wu Qi-Lu. Re?ective Fiber Optic SPR Sensor for Simultaneous Measurement of Refractive Index and Temperature. Acta Automatica Sinica, 2019
    [17] Lin Hai-Tao, Li Meng-Shi, Ding Li-Yun. A Fiber optic biosensor based on hydrogel-immobilized enzyme complex for continuous determination of cholesterol and glucose. Applied Biochemistry and Biotechnology, 2019, 187: 1569−1580 doi: 10.1007/s12010-018-2897-x
    [18] 栗印环, 霍瑞珍等. 葡萄糖氧化酶催化反应动力学研究(硕士论文), 华南理工大学硕士论文, 1999

    Su Yi-Huan, Huo Rui-Zhen. Study on Kinetics of Catalytic Reaction of Glucose Oxidase(Master dissertation), South China University of Technology, 1999
    [19] Wang J, Muto M, Yatabe R. Rational design of peptide-functionalized surface plasmon resonance sensor for specific detection of TNT explosive. Sensors, 2017, 17(10): 1−8 doi: 10.1109/JSEN.2017.2685484
    [20] Wang J, Du S Y, Onodera T. An SPR sensor chip based on peptide-modified single-walled carbon nanotubes with enhanced sensitivity and selectivity in the detection of 2,4,6-trinitrotoluene explosives. Sensors, 2018, 18(12): 1−8 doi: 10.1109/JSEN.2018.2828619
    [21] Wang Q, Wang B T. Sensitivity enhanced SPR immunosensor based on graphene oxide and SPA co-modified photonic crystal fiber. Optics and Laser Technology, 2018, 107: 210−215 doi: 10.1016/j.optlastec.2018.05.006
  • 加载中
计量
  • 文章访问数:  7
  • HTML全文浏览量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 录用日期:  2020-06-01

目录

    /

    返回文章
    返回