2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绳长时变情况下轮胎式集装箱起重机非线性防摆控制算法

曹海昕 郝运嵩 林静正 卢彪 方勇纯

曹海昕, 郝运嵩, 林静正, 卢彪, 方勇纯. 绳长时变情况下轮胎式集装箱起重机非线性防摆控制算法. 自动化学报, 2021, 47(x): 1−9 doi: 10.16383/j.aas.200859
引用本文: 曹海昕, 郝运嵩, 林静正, 卢彪, 方勇纯. 绳长时变情况下轮胎式集装箱起重机非线性防摆控制算法. 自动化学报, 2021, 47(x): 1−9 doi: 10.16383/j.aas.200859
Cao Hai-Xin, Hao Yun-Song, Lin Jing-Zheng, Lu Biao, Fang Yong-Chun. Nonlinear anti-swing control for rubber tyre container gantry crane with rope length variation. Acta Automatica Sinica, 2021, 47(x): 1−9 doi: 10.16383/j.aas.200859
Citation: Cao Hai-Xin, Hao Yun-Song, Lin Jing-Zheng, Lu Biao, Fang Yong-Chun. Nonlinear anti-swing control for rubber tyre container gantry crane with rope length variation. Acta Automatica Sinica, 2021, 47(x): 1−9 doi: 10.16383/j.aas.200859

绳长时变情况下轮胎式集装箱起重机非线性防摆控制算法

doi: 10.16383/j.aas.200859
基金项目: 国家重点研发计划 (2018YFB1309000), 国家自然科学基金面上项目 (61873132), 广东省机器人与智能系统重点实验室开放基金资助
详细信息
    作者简介:

    曹海昕:南开大学人工智能学院机器人与信息自动化研究所硕士研究生, 主要研究方向为欠驱动系统控制. E-mail: c_haixin@mail.nankai.edu.cn

    郝运嵩:南开大学人工智能学院机器人与信息自动化研究所硕士研究生. 主要研究方向为欠驱动系统的非线性控制. E-mail: haoysnk@hotmail.com

    林静正:南开大学人工智能学院机器人与信息自动化研究所博士研究生, 主要研究方向为欠驱动系统控制. E-mail: ljz970129@ mail.nankai.edu.cn

    卢彪:南开大学人工智能学院机器人与信息自动化研究所讲师, 主要研究方向为欠驱动系统非线性控制. E-mail: lubiao@mail.nankai.edu.cn

    方勇纯:南开大学人工智能学院机器人与信息自动化研究所教授. 主要研究方向为非线性控制、机器人视觉伺服控制、欠驱动系统控制和基于原子力显微镜的纳米系统. 本文通信作者. E-mail: fangyc@nankai.edu.cn

Nonlinear Anti-swing Control for Rubber Tyre Container Gantry Crane with Rope Length Variation

Funds: Supported by National Key R&D Program of China (2018YFB1309000), the National Nature Science Foundation of China (61873132) and the Opening Project of Guangdong Provincial Key Lab of Robotics and Intelligent System
  • 摘要: 四绳轮胎式集装箱起重机由于自身的动力学特性较为复杂, 目前仍缺乏稳定高效的控制手段. 为解决港口起重机作业过程中台车定位精准度低、负载易受干扰摆幅大的问题, 文章设计了一种面向工业场景的非线性反馈控制器. 首先在未进行近似处理的前提下对起重机吊具摆动情况进行了建模分析. 在此基础上, 通过在控制器中引入摆幅反馈信息, 实现了绳长时变情况下台车的精确定位与负载摆幅的有效抑制, 为集装箱的运送路径增加了更多选择. 随后基于Lyapunov方法对控制器进行了稳定性分析. 所设计的控制方案在港口实际设备上进行了验证, 在定位精度与消摆性能上相较于人工操作取得了很大提升.
  • 图  1  四绳起重机吊具摆动模型

    Fig.  1  Swing model of four-rope crane spreader

    图  2  四绳轮胎式集装箱起重机

    Fig.  2  Four-rope rubber-tyre container crane

    图  3  控制架构

    Fig.  3  Control architecture

    图  4  长距离无箱运送实验结果

    Fig.  4  Results of long-distance transportation without container

    图  5  长距离带箱运送实验结果

    Fig.  5  Results of long-distance transportation with container

    图  6  短距离带箱运送实验结果

    Fig.  6  Results of short-distance transportation with container

    表  1  不同作业模式下数据对比

    Table  1  Data comparison of different operation modes

    作业模式台车位置
    误差/cm
    起升高度
    误差/cm
    最大
    摆角/°
    作业
    用时/s
    长距离无箱运送人工控制24232.631.8
    算法控制411.123.9
    长距离带箱运送人工控制43733.132.7
    算法控制401.424.6
    短距离带箱运送人工控制15672.523.8
    算法控制221.217.3
    下载: 导出CSV
  • [1] Wang D, He H, Liu D. Intelligent Optimal Control With Critic Learning for a Nonlinear Overhead Crane System. IEEE Transactions on Industrial Informatics, 2017, 14(07): 2932−2940
    [2] Tho H D, Kaneshige A, Terashima K. Minimum-time S-curve commands for vibration-free transportation of an overhead crane with actuator limits. Control Engineering Practice, 2020, 98: 1−12
    [3] 刘平, 李国栋, 杨金凤, 刘兴高. 集装箱装卸摆动最优控制快速数值求解算法. 控制理论与应用, 2019, 36(08): 1275−1282

    Liu Ping, Li Guo-Dong, Yang Jin-Feng, Liu Xing-Gao. Fast Optimal Control Numerical Approach for the Swing Control of Container Load. Control Theory & Applications, 2019, 36(08): 1275−1282
    [4] Wu Y M, Sun N, Chen H. Nonlinear time-optimal trajectory planning for varying-rope-length overhead cranes. Assembly Automation, 2018, 38(05): 587−594 doi: 10.1108/AA-12-2017-183
    [5] Zhang M H, Ma X, Song R, Rong X W, Tian G H, Tian X C, Li Y B. Adaptive Proportional-Derivative Sliding Mode Control Law With Improved Transient Performance for Underactuated Overhead Crane Systems. IEEE/CAA Journal of Automatica Sinica, 2018, 5(03): 683−690 doi: 10.1109/JAS.2018.7511072
    [6] Wang Y S, Xu W M. Synchronous Control of Double-container Overhead Crane Based on PI Terminal Sliding Mode. International Core Journal of Engineering, 2020, 6(05): 133−143
    [7] 何博, 方勇纯, 卢彪. 针对输入时滞的桥式起重机鲁棒控制. 自动化学报, 2019, 45(06): 1065−1073

    He Bo, Fang Yong-Chun, Lu Biao. Robust Control for an Overhead Crane With Input Delay. Acta Automatica Sinica, 2019, 45(06): 1065−1073
    [8] Chwa D. Sliding-Mode-Control-Based Robust Finite-Time Antisway Tracking Control of 3-D Overhead Cranes. IEEE Transactions on Industrial Electronics, 2017, 64(08): 6775−6784 doi: 10.1109/TIE.2017.2701760
    [9] Zhao Y, Gao H. Fuzzy-Model-Based Control of an Overhead Crane With Input Delay and Actuator Saturation. IEEE Transactions on Fuzzy Systems, 2012, 20(01): 181−186 doi: 10.1109/TFUZZ.2011.2164083
    [10] Chen H, Fang Y C, Sun N. A Swing Constraint Guaranteed MPC Algorithm for Underactuated Overhead Cranes. IEEE/ASME Transactions on Mechatronics, 2016, 21(05): 2543−2555 doi: 10.1109/TMECH.2016.2558202
    [11] Szpytko, Janusz, Smoczek. Particle Swarm Optimization-Based Multivariable Generalized Predictive Control for an Overhead Crane. IEEE/ASME transactions on mechatronics, 2017, 22(01): 258−268 doi: 10.1109/TMECH.2016.2598606
    [12] Wu X, He X. Nonlinear Energy-Based Regulation Control of Three-Dimensional Overhead Cranes. IEEE Transactions on Automation Science & Engineering, 2017, 14(02): 1297−1308
    [13] 胡洲, 王志胜, 甄子洋. 带输入饱和的欠驱动吊车非线性信息融合控制. 自动化学报, 2014, 40(07): 1522−1527

    Hu Zhou, Wang Zhi-Sheng, Zhen Zi-Yang. Nonlinear Information Fusion Control for Underactuated Cranes with Input Saturation. Acta Automatica Sinica, 2014, 40(07): 1522−1527
    [14] 何博, 方勇纯, 刘海亮, 孙宁. 桥式起重机精准定位在线轨迹规划方法设计及应用. 控制理论与应用, 2016, 33(10): 1352−1358 doi: 10.7641/CTA.2016.60312

    He Bo, Fang Yong-Chun, Liu Hai-Liang, Sun Ning. Precise positioning online trajectory planner design and application for overhead cranes. Control Theory & Applications, 2016, 33(10): 1352−1358 doi: 10.7641/CTA.2016.60312
    [15] Singhose W, Porter L, Kenison M, Kriikku E. Effects of hoisting on the input shaping control of gantry cranes. Control Engineering Practice, 2000, 8(10): 1159−1165 doi: 10.1016/S0967-0661(00)00054-X
    [16] Ngo Q H, Hong K S, Jung I H. Adaptive control of an axially moving system. Journal of Mechanical ence and Technology, 2009, 23(11): 3071−3078
    [17] Kim C S, Hong K S. Boundary Control of Container Cranes from the Perspective of Controlling an Axially Moving String System. International Journal of Control, Automation, and Systems, 2009, 7(03): 437−445 doi: 10.1007/s12555-009-0313-6
    [18] Chwa D, Park M S, Hong S K. Antisway Tracking Control of Overhead Cranes With System Uncertainty and Actuator Nonlinearity Using an Adaptive Fuzzy Sliding-Mode Control. IEEE Transactions on Industrial Electronics, 2008, 55(11): 3972−3984 doi: 10.1109/TIE.2008.2004385
    [19] Lu B, Fang Y C, Sun N. Modeling and verification for a four-rope crane. In: Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang, China: IEEE, 2015.2018−2023.
    [20] Lu B, Fang Y C, Sun N. Nonlinear control for underactuated multi-rope cranes: modeling, theoretical design and hardware experiments. Control Engineering Practice, 2018, 76: 123−132 doi: 10.1016/j.conengprac.2018.04.005
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 录用日期:  2020-12-28
  • 网络出版日期:  2021-02-01

目录

    /

    返回文章
    返回