[1] Norouzi-Gheidari N, Archambault P S, Fung J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs:systematic review and meta-analysis of the literature. Journal of Rehabilitation Research and Development, 2012, 49(4):479-496 doi: 10.1682/JRRD.2010.10.0210
[2] Connell L A, Mcmahon N E, Harris J E, Watkins C L, Eng J J. A formative evaluation of the implementation of an upper limb stroke rehabilitation intervention in clinical practice:a qualitative interview study. Implementation Science, 2014, 9:90, DOI: 10.1186/s13012-014-0090-3
[3] 何雯, 王凯.脑卒中后上肢功能康复研究进展.中国康复理论与实践, 2014, 20(4):334-339 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKLS201404010.htm

He Wen, Wang Kai. Advance in rehabilitation of upper limb function in hemiplegic patients after stroke (review). Chinese Journal of Rehabilitation Theory and Practice, 2014, 20(4):334-339 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKLS201404010.htm
[4] 夏彬, 吴睿, 刘合玉.上肢康复机器人对偏瘫患者上肢运动功能治疗的临床研究.中国实用神经疾病杂志, 2014, 17(9):104-106 http://www.cnki.com.cn/Article/CJFDTOTAL-HNSJ201409062.htm

Xia Bin, Wu Rui, Liu He-Yu. Clinical research on upper limb rehabilitation robot for upper limb movement function in patients with hemiplegia therapy. Chinese Journal of Practical Nervous Diseases, 2014, 17(9):104-106 http://www.cnki.com.cn/Article/CJFDTOTAL-HNSJ201409062.htm
[5] Frisoli A, Procopio C, Chisari C, Creatini I, Bonfiglio L, Bergamasco M, Rossi B, Carboncini M C. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. Journal of NeuroEngineering and Rehabilitation, 2012, 9:36, DOI: 10.1186/1743-0003-9-36
[6] Ren Y P, Kang S H, Park H S, Wu Y N, Zhang L Q. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(3):490-499 doi: 10.1109/TNSRE.2012.2225073
[7] Lo H S, Sheng Q X. Exoskeleton robots for upper-limb rehabilitation:state of the art and future prospects. Medical Engineering and Physics, 2012, 34(3):261-268 doi: 10.1016/j.medengphy.2011.10.004
[8] 杨启志, 曹电锋, 赵金海.上肢康复机器人研究现状的分析.机器人, 2013, 35(5):630-640 doi: 10.3724/SP.J.1218.2013.00630

Yang Qi-Zhi, Cao Dian-Feng, Zhao Jin-Hai. Analysis on state of the art of upper limb rehabilitation robots. Robot, 2013, 35(5):630-640 doi: 10.3724/SP.J.1218.2013.00630
[9] Frisoli A, Sotgiu E, Procopio C, Bergamasco M, Rossi B, Chisari C. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton. In:Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics (ICORR). Zurich, Switzerland:IEEE, 2011. 1-8
[10] Lee G D, Wang W W, Lee K W, Lin S Y, Fu L C, Lai J S, Chen W S, Luh J J. Arm exoskeleton rehabilitation robot with assistive system for patient after stroke. In:Proceedings of the 12th IEEE International Conference on Control, Automation and Systems (ICCAS). Jeju Island, Korea:IEEE, 2012. 1943-1948
[11] Hu J, Hou Z G, Zhang F, Chen Y X, Li P F. Training strategies for a lower limb rehabilitation robot based on impedance control. In:Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). San Diego, CA, USA:IEEE, 2012. 6032-6035
[12] 彭亮, 侯增广, 王卫群.康复机器人的同步主动交互控制与实现.自动化学报, 2015, 41(11):1837-1846 http://www.aas.net.cn/CN/abstract/abstract18759.shtml

Peng Liang, Hou Zeng-Guang, Wang Wei-Qun. Synchronous active interaction control and its implementation for a rehabilitation robot. Acta Automatica Sinica, 2015, 41(11):1837-1846 http://www.aas.net.cn/CN/abstract/abstract18759.shtml
[13] Cao J H, Xie S Q, Das R, Zhu G L. Control strategies for effective robot assisted gait rehabilitation:the state of art and future prospects. Medical Engineering and Physics, 2014, 36(12):1555-1566 doi: 10.1016/j.medengphy.2014.08.005
[14] Zhang Z, Sup F. Activity recognition of the torso based on surface electromyography for exoskeleton control. Biomedical Signal Processing and Control, 2014, 10:281-288 doi: 10.1016/j.bspc.2013.10.002
[15] Li Z J, Huang Z C, He W, Su C Y. Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Transactions on Industrial Electronics, DOI:10.1109/TIE.2016.2538741
[16] Khan A M, Yun D W, Ali M A, Zuhaib K M, Yuan C, Iqbal J, Han J, Shin K, Han C. Passivity based adaptive control for upper extremity assist exoskeleton. International Journal of Control, Automation and Systems, 2016, 14(1):291-300 doi: 10.1007/s12555-014-0250-x
[17] 丁其川, 熊安斌, 赵新刚, 韩建达.基于表面肌电的运动意图识别方法研究及应用综述.自动化学报, 2016, 42(1):13-25 http://www.aas.net.cn/CN/abstract/abstract18792.shtml

Ding Qi-Chuan, Xiong An-Bin, Zhao Xin-Gang, Han Jian-Da. A review on researches and applications of sEMG-based motion intent recognition methods. Acta Automatica Sinica, 2016, 42(1):13-25 http://www.aas.net.cn/CN/abstract/abstract18792.shtml
[18] Rahman M H, Ochoa-Luna C, Rahman M J, Saad M, Archambault P. Force-position control of a robotic exoskeleton to provide upper extremity movement assistance. International Journal of Modelling, Identification and Control, 2014, 21(4):390-400 doi: 10.1504/IJMIC.2014.062026
[19] Lee H D, Lee B K, Kim W S, Hanb J S, Shinc K S, Han C S. Human-robot cooperation control based on a dynamic model of an upper limb exoskeleton for human power amplification. Mechatronics, 2014, 24(2):168-176 doi: 10.1016/j.mechatronics.2014.01.007
[20] Chen S H, Lien W M, Wang W W, Lee G D, Hsu L C, Lee K W, Lin S Y, Lin C H, Fu L C, Lai J S, Luh J J, Chen W S. Assistive control system for upper limb rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(11):1199-1209 doi: 10.1109/TNSRE.2016.2532478
[21] Wang W Q, Hou Z G, Tong L, Chen Y X, Peng L, Tan M. Dynamics modeling and identification of the human-robot interface based on a lower limb rehabilitation robot. In:Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China:IEEE, 2014. 6012-6017
[22] Wang X F, Li X, Wang J H. Modeling and identification of the human-exoskeleton interaction dynamics for upper limb rehabilitation. In:Proceedings of the 2015 Chinese Intelligent Automation Conference. Berlin Heidelberg, Germarny:Springer, 2015, 338:51-60
[23] Anam K, Al-Jumaily A A. Active exoskeleton control systems:state of the art. Procedia Engineering, 2012, 41:988-994 doi: 10.1016/j.proeng.2012.07.273
[24] Rahman M H, Saad M, Kenné J P, Archambault P S. Control of an exoskeleton robot arm with sliding mode exponential reaching law. International Journal of Control Automation and Systems, 2013, 11(1):92-104 doi: 10.1007/s12555-011-0135-1
[25] Li Z J, Su C Y, Li G L, Su H. Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs. IEEE Transactions on Fuzzy Systems, 2015, 23(3):555-566 doi: 10.1109/TFUZZ.2014.2317511
[26] Li Z J, Wang B C, Sun F C, Yang C G, Xie Q, Zhang W D. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE Journal of Biomedical and Health Informatics, 2014, 18(3):1043-1050 doi: 10.1109/JBHI.2013.2286455
[27] 侯忠生, 许建新.数据驱动控制理论及方法的回顾和展望.自动化学报, 2009, 35(6):650-667 doi: 10.3724/SP.J.1004.2009.00650

Hou Zhong-Sheng, Xu Jian-Xin. On data-driven control theory:the state of the art and perspective. Acta Automatica Sinica, 2009, 35(6):650-667 doi: 10.3724/SP.J.1004.2009.00650
[28] Hou Z S, Jin S T. Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems. IEEE Transactions on Neural Networks, 2011, 22(12):2173-2188 doi: 10.1109/TNN.2011.2176141
[29] Li Q L, Wang D Y, Du Z J, Sun L N. A novel rehabilitation system for upper limbs. In:Proceedings of the 27th Annual Conference of the Engineering in Medicine and Biology. Shanghai, China:IEEE, 2006. 6840-6843
[30] Huang J, Huo W G, Xu W X, Mohammed S, Amirat Y. Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition. IEEE Transactions on Automation Science and Engineering, 2015, 12:1257-1270 doi: 10.1109/TASE.2015.2466634
[31] Craig J J[著], 贠超[译].机器人学导论.第3版.北京:机械工业出版社, 2006.

Craig J J[Author], Yun Chao[Translator]. Introduction to Robotics:Mechanics and Control (Third edition). Beijing:China Machine Press, 2006.
[32] Niku S B[著], 孙富春, 朱纪洪, 刘国栋[译].机器人学导论-分析、控制及应用.第2版.北京:电子工业出版社, 2013.

Niku S B[Author], Sun Fu-Chun, Zhu Ji-Hong, Liu Guo-Dong[Translator]. Introduction to Robotics:Analysis, Control, Applications (Second edition). Beijing:Electronic Industry Press, 2013.
[33] 吴文祥.多自由度串联机器人关节摩擦分析与低速高精度运动控制[博士学位论文], 浙江大学, 中国, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10335-1014173276.htm

Wu Wen-Xiang. Joint Friction Analysis and Low-Speed High-Precision Motion Control of Multi-DOF Serial Robot[Ph.D. dissertation], Zhejiang University, China, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10335-1014173276.htm
[34] 刘金琨.机器人控制系统的设计与MATLAB仿真.北京:清华大学出版社, 2008.

Liu Jin-Kun. Design and MATLAB Simulation of Robot Control System. Beijing:Tsinghua University Press, 2008.
[35] 胡盛斌.非线性多关节机器人系统滑模控制.北京:国防工业出版社, 2015.

Hu Sheng-Bin. Sliding Mode Control for Nonlinear Multi Joint Robot System. Beijing:National Defence of Industry Press, 2015.
[36] Matkowski J. Uniformly bounded composition operators between general Lipschitz function normed spaces. Topological Methods in Nonlinear Analysis, 2011, 38(2):395-405 https://www.researchgate.net/publication/265979151_Uniformly_bounded_composition_operators_between_general_Lipschitz_function_normed_spaces
[37] Ekramian M, Sheikholeslam F, Hosseinnia S, Yazdanpanah M J. Adaptive state observer for Lipschitz nonlinear systems. Systems and Control Letters, 2013, 62(4):319-323 doi: 10.1016/j.sysconle.2013.01.002
[38] Hou Z S, Jin S T. Model Free Adaptive Control:Theory and Applications. Florida, USA:Chemical Rubber Company Press, 2013.
[39] Wang X F, Li X, Wang J H, Fang X K, Zhu X F. Data-driven model-free adaptive sliding mode control for the multi degree-of-freedom robotic exoskeleton. Information Sciences, 2016, 327:246-257 doi: 10.1016/j.ins.2015.08.025
[40] Sarpturk S, Istefanopulos Y, Kaynak O. On the stability of discrete-time sliding mode control systems. IEEE Transactions on Automatic Control, 1987, 32(10):930-932 doi: 10.1109/TAC.1987.1104468
[41] Gao W B, Wang Y F, Homaifa A. Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics, 1995, 42(2):117-122 doi: 10.1109/41.370376
[42] Culmer P R, Jackson A E, Makower S, Richardson R, Cozens J A, Levesley M C, Bhakta B B. A control strategy for upper limb robotic rehabilitation with a dual robot system. IEEE/ASME Transactions on Mechatronics, 2010, 15(4):575-585 doi: 10.1109/TMECH.2009.2030796
[43] Hou Z S, Jin S T. A novel data-driven control approach for a class of discrete-time nonlinear systems. IEEE Transactions on Control Systems Technology, 2011, 19(6):1549-1558 doi: 10.1109/TCST.2010.2093136
[44] 李钟慎.基于MATLAB设计巴特沃斯低通滤波器.信息技术, 2003, 27(3):49-50, 52 http://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ200303017.htm

Li Zhong-Shen. The design of butterworth lowpass filter based on MATLAB. Information Technology, 2003, 27(3):49-50, 52 http://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ200303017.htm
[45] Mello R G T, Oliveira L F, Nadal J. Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram. Computer Methods and Programs in Biomedicine, 2007, 87(1):28-35 doi: 10.1016/j.cmpb.2007.04.004
[46] Burke J W, McNeill M, Charles D, Morrow P, Crosbie J, McDonough S. Serious games for upper limb rehabilitation following stroke. In:Proceedings of the 2009 Conference in Games and Virtual Worlds for Serious Applications. Coventry, UK:IEEE, 2009. 103-110